SpatialConvolution
Scala:
val m = SpatialConvolution(nInputPlane,nOutputPlane,kernelW,kernelH,strideW=1,strideH=1,padW=0,padH=0,nGroup=1,propagateBack=true,wRegularizer=null,bRegularizer=null,initWeight=null, initBias=null, initGradWeight=null, initGradBias=null)
Python:
m = SpatialConvolution(n_input_plane,n_output_plane,kernel_w,kernel_h,stride_w=1,stride_h=1,pad_w=0,pad_h=0,n_group=1,propagate_back=True,wRegularizer=None,bRegularizer=None,init_weight=None,init_bias=None,init_grad_weight=None,init_grad_bias=None)
SpatialConvolution is a module that applies a 2D convolution over an input image.
The input tensor in forward(input)
is expected to be
either a 4D tensor (batch x nInputPlane x height x width
) or a 3D tensor (nInputPlane x height x width
). The convolution is performed on the last two dimensions.
Detailed paramter explaination for the constructor.
nInputPlane
The number of expected input planes in the image given into forward()nOutputPlane
The number of output planes the convolution layer will produce.kernelW
The kernel width of the convolutionkernelH
The kernel height of the convolutionstrideW
The step of the convolution in the width dimension.strideH
The step of the convolution in the height dimensionpadW
padding to be added to width to the input.padH
padding to be added to height to the input.nGroup
Kernel group numberpropagateBack
whether to propagate gradient backwRegularizer
regularizer on weight. an instance of [[Regularizer]] (e.g. L1 or L2)bRegularizer
regularizer on bias. an instance of [[Regularizer]] (e.g. L1 or L2).initWeight
weight initializerinitBias
bias initializerinitGradWeight
weight gradient initializerinitGradBias
bias gradient initializer
Scala example:
scala>
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric.NumericFloat
import com.intel.analytics.bigdl.nn._
import com.intel.analytics.bigdl.tensor._
import com.intel.analytics.bigdl.tensor.Storage
val m = SpatialConvolution(2,1,2,2,1,1,0,0)
m.setInitMethod(weightInitMethod = BilinearFiller, biasInitMethod = Zeros)
val params = m.getParameters()
scala> print(params)
(1.0
0.0
0.0
0.0
1.0
0.0
0.0
0.0
0.0
[com.intel.analytics.bigdl.tensor.DenseTensor of size 9],0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
[com.intel.analytics.bigdl.tensor.DenseTensor of size 9])
scala>
val input = Tensor(1,2,3,3).randn()
val output = m.forward(input)
val gradOut = Tensor(1,1,2,2).fill(0.2f)
val gradIn = m.backward(input,gradOut)
scala> print(input)
(1,1,.,.) =
-0.37011376 0.13565119 -0.73574775
-0.19486316 -0.4430604 -0.62543416
0.7017611 -0.6441595 -1.2953792
(1,2,.,.) =
-0.9903588 0.5669722 0.2630131
0.03392942 -0.6984676 -0.12389368
0.78704715 0.5411976 -1.3877676
[com.intel.analytics.bigdl.tensor.DenseTensor$mcF$sp of size 1x2x3x3]
scala> print(output)
(1,1,.,.) =
-1.3604726 0.70262337
-0.16093373 -1.141528
[com.intel.analytics.bigdl.tensor.DenseTensor of size 1x1x2x2]
scala> print(gradOut)
(1,1,.,.) =
0.2 0.2
0.2 0.2
[com.intel.analytics.bigdl.tensor.DenseTensor$mcF$sp of size 1x1x2x2]
scala> print(gradIn)
(1,1,.,.) =
0.2 0.2 0.0
0.2 0.2 0.0
0.0 0.0 0.0
(1,2,.,.) =
0.2 0.2 0.0
0.2 0.2 0.0
0.0 0.0 0.0
[com.intel.analytics.bigdl.tensor.DenseTensor of size 1x2x3x3]
Python example:
from bigdl.nn.layer import *
import numpy as np
input = np.random.rand(1,3,3,3)
print "input is :",input
m = SpatialConvolution(3,1,2,2,1,1,0,0)
out = m.forward(input)
print "output m is :",out
grad_out = np.random.rand(1,1,2,2)
print "grad out of m is :",grad_out
grad_in = m.backward(input,grad_out)
print "grad input of m is :",grad_in
Gives the output,
input is : [[[[ 0.75276617 0.44212513 0.90275949]
[ 0.78205279 0.77864714 0.83647254]
[ 0.76220944 0.22106036 0.68762202]]
[[ 0.37346971 0.31532213 0.33276243]
[ 0.69872884 0.07262236 0.66372462]
[ 0.47803013 0.80194459 0.53313873]]
[[ 0.56196833 0.20599878 0.47575818]
[ 0.35454298 0.96910557 0.36234704]
[ 0.64017738 0.95762579 0.50073035]]]]
creating: createSpatialConvolution
output m is : [[[[-1.08398974 -0.67615652]
[-0.77027249 -0.82885492]]]]
grad out of m is : [[[[ 0.38295452 0.77048361]
[ 0.11671955 0.76357513]]]]
grad input of m is : [[[[-0.02344826 -0.06515953 -0.03618064]
[-0.06770924 -0.22586647 -0.14004168]
[-0.01845866 -0.13653883 -0.10325129]]
[[-0.09294108 -0.14361492 0.08727306]
[-0.09885897 -0.21209857 0.29151234]
[-0.02149716 -0.10957514 0.20318349]]
[[-0.05926216 -0.04542646 0.14849319]
[-0.09506465 -0.34244278 -0.03763583]
[-0.02346931 -0.1815301 -0.18314059]]]]
SpatialDilatedConvolution
Scala:
val layer = SpatialDilatedConvolution(
inputPlanes,
outputPlanes,
kernelW,
kernelH,
strideW,
strideH,
paddingW,
paddingH,
dilationW,
dilationH
)
Python:
layer = SpatialDilatedConvolution(
inputPlanes,
outputPlanes,
kernelW,
kernelH,
strideW,
strideH,
paddingW,
paddingH,
dilationW,
dilationH
)
Apply a 2D dilated convolution over an input image.
The input tensor is expected to be a 3D or 4D(with batch) tensor.
For a normal SpatialConvolution, the kernel will multiply with input image element-by-element contiguous. In dilated convolution, it’s possible to have filters that have spaces between each cell. For example, filter w and image x, when dilatiionW and dilationH both = 1, this is normal 2D convolution
w(0, 0) * x(0, 0), w(0, 1) * x(0, 1)
w(1, 0) * x(1, 0), w(1, 1) * x(1, 1)
when dilationW and dilationH both = 2
w(0, 0) * x(0, 0), w(0, 1) * x(0, 2)
w(1, 0) * x(2, 0), w(1, 1) * x(2, 2)
when dilationW and dilationH both = 3
w(0, 0) * x(0, 0), w(0, 1) * x(0, 3)
w(1, 0) * x(3, 0), w(1, 1) * x(3, 3)
If input is a 3D tensor nInputPlane x height x width,
* owidth = floor(width + 2 * padW - dilationW * (kW-1) - 1) / dW + 1
* oheight = floor(height + 2 * padH - dilationH * (kH-1) - 1) / dH + 1
Reference Paper:
Yu F, Koltun V. Multi-scale context aggregation by dilated convolutions[J]. arXiv preprint arXiv:1511.07122, 2015.
Scala example:
import com.intel.analytics.bigdl.nn._
import com.intel.analytics.bigdl.utils.T
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric.NumericFloat
val layer = SpatialDilatedConvolution(1, 1, 2, 2, 1, 1, 0, 0, 2, 2)
val input = Tensor(T(T(
T(1.0f, 2.0f, 3.0f, 4.0f),
T(5.0f, 6.0f, 7.0f, 8.0f),
T(9.0f, 1.0f, 2.0f, 3.0f),
T(4.0f, 5.0f, 6.0f, 7.0f)
)))
val filter = Tensor(T(T(T(
T(1.0f, 1.0f),
T(1.0f, 1.0f)
))))
layer.weight.copy(filter)
layer.bias.zero()
layer.forward(input)
layer.backward(input, Tensor(T(T(
T(0.1f, 0.2f),
T(0.3f, 0.4f)
))))
Gives the output,
(1,.,.) =
15.0 10.0
22.0 26.0
[com.intel.analytics.bigdl.tensor.DenseTensor of size 1x2x2]
(1,.,.) =
0.1 0.2 0.1 0.2
0.3 0.4 0.3 0.4
0.1 0.2 0.1 0.2
0.3 0.4 0.3 0.4
[com.intel.analytics.bigdl.tensor.DenseTensor of size 1x4x4]
Python example:
from bigdl.nn.layer import SpatialDilatedConvolution
import numpy as np
layer = SpatialDilatedConvolution(1, 1, 2, 2, 1, 1, 0, 0, 2, 2)
input = np.array([[
[1.0, 2.0, 3.0, 4.0],
[5.0, 6.0, 7.0, 8.0],
[9.0, 1.0, 2.0, 3.0],
[4.0, 5.0, 6.0, 7.0]
]])
filter = np.array([[[
[1.0, 1.0],
[1.0, 1.0]
]]])
bias = np.array([0.0])
layer.set_weights([filter, bias])
layer.forward(input)
layer.backward(input, np.array([[[0.1, 0.2], [0.3, 0.4]]]))
Gives the output,
array([[[ 15., 10.],
[ 22., 26.]]], dtype=float32)
array([[[ 0.1 , 0.2 , 0.1 , 0.2 ],
[ 0.30000001, 0.40000001, 0.30000001, 0.40000001],
[ 0.1 , 0.2 , 0.1 , 0.2 ],
[ 0.30000001, 0.40000001, 0.30000001, 0.40000001]]], dtype=float32)
SpatialShareConvolution
Scala:
val layer = SpatialShareConvolution(nInputPlane, nOutputPlane, kW, kH, dW, dH,
padW, padH)
Python:
layer = SpatialShareConvolution(nInputPlane, nOutputPlane, kW, kH, dW, dH, padW, padH)
Applies a 2D convolution over an input image composed of several input planes. The input tensor in forward(input) is expected to be a 3D tensor (nInputPlane x height x width).
This layer has been optimized to save memory. If using this layer to construct multiple convolution layers, please add sharing script for the fInput and fGradInput. Please refer to the ResNet example.
Scala example:
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric.NumericFloat
import com.intel.analytics.bigdl.nn._
import com.intel.analytics.bigdl.tensor._
val nInputPlane = 1
val nOutputPlane = 1
val kW = 2
val kH = 2
val dW = 1
val dH = 1
val padW = 0
val padH = 0
val layer = SpatialShareConvolution(nInputPlane, nOutputPlane, kW, kH, dW, dH,
padW, padH)
val inputData = Array(
1.0, 2, 3, 1,
4, 5, 6, 1,
7, 8, 9, 1,
1.0, 2, 3, 1,
4, 5, 6, 1,
7, 8, 9, 1,
1.0, 2, 3, 1,
4, 5, 6, 1,
7, 8, 9, 1
)
val kernelData = Array(
2.0, 3,
4, 5
)
val biasData = Array(0.0)
layer.weight.copy(Tensor(Storage(kernelData), 1,
Array(nOutputPlane, nInputPlane, kH, kW)))
layer.bias.copy(Tensor(Storage(biasData), 1, Array(nOutputPlane)))
val input = Tensor(Storage(inputData), 1, Array(3, 1, 3, 4))
val output = layer.updateOutput(input)
> output
res2: com.intel.analytics.bigdl.tensor.Tensor[Float] =
(1,1,.,.) =
49.0 63.0 38.0
91.0 105.0 56.0
(2,1,.,.) =
49.0 63.0 38.0
91.0 105.0 56.0
(3,1,.,.) =
49.0 63.0 38.0
91.0 105.0 56.0
Python example:
nInputPlane = 1
nOutputPlane = 1
kW = 2
kH = 2
dW = 1
dH = 1
padW = 0
padH = 0
layer = SpatialShareConvolution(nInputPlane, nOutputPlane, kW, kH, dW, dH, padW, padH)
input = np.array([
1.0, 2, 3, 1,
4, 5, 6, 1,
7, 8, 9, 1,
1.0, 2, 3, 1,
4, 5, 6, 1,
7, 8, 9, 1,
1.0, 2, 3, 1,
4, 5, 6, 1,
7, 8, 9, 1]
).astype("float32").reshape(3, 1, 3, 4)
layer.forward(input)
> print (output)
array([[[[-3.55372381, -4.0352459 , -2.65861344],
[-4.99829054, -5.4798131 , -3.29477644]]],
[[[-3.55372381, -4.0352459 , -2.65861344],
[-4.99829054, -5.4798131 , -3.29477644]]],
[[[-3.55372381, -4.0352459 , -2.65861344],
[-4.99829054, -5.4798131 , -3.29477644]]]], dtype=float32)
SpatialFullConvolution
Scala:
val m = SpatialFullConvolution(nInputPlane, nOutputPlane, kW, kH, dW=1, dH=1, padW=0, padH=0, adjW=0, adjH=0,nGroup=1, noBias=false,wRegularizer=null,bRegularizer=null)
or
val m = SpatialFullConvolution(InputPlane, nOutputPlane, kW, kH, dW=1, dH=1, padW=0, padH=0, adjW=0, adjH=0,nGroup=1, noBias=false,wRegularizer=null,bRegularizer=null)
Python:
m = SpatialFullConvolution(n_input_plane,n_output_plane,kw,kh,dw=1,dh=1,pad_w=0,pad_h=0,adj_w=0,adj_h=0,n_group=1,no_bias=False,init_method='default',wRegularizer=None,bRegularizer=None)
SpatialFullConvolution is a module that applies a 2D full convolution over an input image.
The input tensor in forward(input)
is expected to be
either a 4D tensor (batch x nInputPlane x height x width
) or a 3D tensor (nInputPlane x height x width
). The convolution is performed on the last two dimensions. adjW
and adjH
are used to adjust the size of the output image. The size of output tensor of forward
will be :
output width = (width - 1) * dW - 2*padW + kW + adjW
output height = (height - 1) * dH - 2*padH + kH + adjH
Note, scala API also accepts a table input with two tensors: T(convInput, sizeTensor)
where convInput
is the standard input tensor, and the size of sizeTensor
is used to set the size of the output (will ignore the adjW
and adjH
values used to construct the module). Use SpatialFullConvolution[Table, T](...)
instead of SpatialFullConvolution[Tensor,T](...)
) for table input.
This module can also be used without a bias by setting parameter noBias = true
while constructing the module.
Other frameworks may call this operation "In-network Upsampling", "Fractionally-strided convolution", "Backwards Convolution," "Deconvolution", or "Upconvolution."
Reference: Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015: 3431-3440.
Detailed explaination of arguments in constructor.
nInputPlane
The number of expected input planes in the image given into forward()nOutputPlane
The number of output planes the convolution layer will produce.kW
The kernel width of the convolution.kH
The kernel height of the convolution.dW
The step of the convolution in the width dimension. Default is 1.dH
The step of the convolution in the height dimension. Default is 1.padW
The additional zeros added per width to the input planes. Default is 0.padH
The additional zeros added per height to the input planes. Default is 0.adjW
Extra width to add to the output image. Default is 0.adjH
Extra height to add to the output image. Default is 0.nGroup
Kernel group number.noBias
If bias is needed.wRegularizer
instance of [[Regularizer]] (eg. L1 or L2 regularization), applied to the input weights matrices.bRegularizer
instance of [[Regularizer]] applied to the bias.
Scala example:
Tensor Input example:
scala>
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric.NumericFloat
import com.intel.analytics.bigdl.nn._
import com.intel.analytics.bigdl.tensor._
import com.intel.analytics.bigdl.tensor.Storage
val m = SpatialFullConvolution(1, 2, 2, 2, 1, 1,0, 0, 0, 0, 1, false)
val input = Tensor(1,1,3,3).randn()
val output = m.forward(input)
val gradOut = Tensor(1,2,4,4).fill(0.1f)
val gradIn = m.backward(input,gradOut)
scala> print(input)
(1,1,.,.) =
0.18219171 1.3252861 -1.3991559
0.82611334 1.0313315 0.6075537
-0.7336061 0.3156875 -0.70616096
[com.intel.analytics.bigdl.tensor.DenseTensor$mcF$sp of size 1x1x3x3]
scala> print(output)
(1,1,.,.) =
-0.49278542 -0.5823938 -0.8304068 -0.077556044
-0.5028842 -0.7281958 -1.1927067 -0.34262076
-0.41680115 -0.41400516 -0.7599415 -0.42024887
-0.5286566 -0.30015367 -0.5997892 -0.32439864
(1,2,.,.) =
-0.13131973 -0.5770084 1.1069719 -0.6003375
-0.40302444 -0.07293816 -0.2654545 0.39749345
0.37311426 -0.49090374 0.3088816 -0.41700447
-0.12861171 0.09394867 -0.17229918 0.05556257
[com.intel.analytics.bigdl.tensor.DenseTensor of size 1x2x4x4]
scala> print(gradOut)
(1,1,.,.) =
0.1 0.1 0.1 0.1
0.1 0.1 0.1 0.1
0.1 0.1 0.1 0.1
0.1 0.1 0.1 0.1
(1,2,.,.) =
0.1 0.1 0.1 0.1
0.1 0.1 0.1 0.1
0.1 0.1 0.1 0.1
0.1 0.1 0.1 0.1
[com.intel.analytics.bigdl.tensor.DenseTensor$mcF$sp of size 1x2x4x4]
scala> print(gradIn)
(1,1,.,.) =
-0.05955213 -0.05955213 -0.05955213
-0.05955213 -0.05955213 -0.05955213
-0.05955213 -0.05955213 -0.05955213
[com.intel.analytics.bigdl.tensor.DenseTensor of size 1x1x3x3]
Table input Example
scala>
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric.NumericFloat
import com.intel.analytics.bigdl.nn._
import com.intel.analytics.bigdl.tensor._
import com.intel.analytics.bigdl.utils.{T, Table}
val m = SpatialFullConvolution(1, 2, 2, 2, 1, 1,0, 0, 0, 0, 1, false)
val input1 = Tensor(1, 3, 3).randn()
val input2 = Tensor(3, 3).fill(2.0f)
val input = T(input1, input2)
val output = m.forward(input)
val gradOut = Tensor(2,4,4).fill(0.1f)
val gradIn = m.backward(input,gradOut)
scala> print(input)
{
2: 2.0 2.0 2.0
2.0 2.0 2.0
2.0 2.0 2.0
[com.intel.analytics.bigdl.tensor.DenseTensor$mcF$sp of size 3x3]
1: (1,.,.) =
1.276177 0.62761325 0.2715257
-0.030832397 0.5046206 0.6835176
-0.5832693 0.17266633 0.7461992
[com.intel.analytics.bigdl.tensor.DenseTensor$mcF$sp of size 1x3x3]
}
scala> print(output)
(1,.,.) =
-0.18339296 0.04208675 -0.17708774 -0.30901802
-0.1484881 0.23592418 0.115615785 -0.11288056
-0.47266048 -0.41772115 0.07501307 0.041751802
-0.4851033 -0.5427048 -0.18293871 -0.12682784
(2,.,.) =
0.6391188 0.845774 0.41208875 0.13754106
-0.45785713 0.31221163 0.6006259 0.36563575
-0.24076991 -0.31931365 0.31651747 0.4836449
0.24247466 -0.16731171 -0.20887817 0.19513035
[com.intel.analytics.bigdl.tensor.DenseTensor of size 2x4x4]
scala> print(gradOut)
(1,.,.) =
0.1 0.1 0.1 0.1
0.1 0.1 0.1 0.1
0.1 0.1 0.1 0.1
0.1 0.1 0.1 0.1
(2,.,.) =
0.1 0.1 0.1 0.1
0.1 0.1 0.1 0.1
0.1 0.1 0.1 0.1
0.1 0.1 0.1 0.1
[com.intel.analytics.bigdl.tensor.DenseTensor$mcF$sp of size 2x4x4]
scala> print(gradIn)
{
2: 0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0
[com.intel.analytics.bigdl.tensor.DenseTensor of size 3x3]
1: (1,.,.) =
0.16678208 0.16678208 0.16678208
0.16678208 0.16678208 0.16678208
0.16678208 0.16678208 0.16678208
[com.intel.analytics.bigdl.tensor.DenseTensor of size 1x3x3]
}
Python example:
from bigdl.nn.layer import *
import numpy as np
m = SpatialFullConvolution(1, 2, 2, 2, 1, 1,0, 0, 0, 0, 1, False)
print "--------- tensor input---------"
tensor_input = np.random.rand(1,3,3)
print "input is :",tensor_input
out = m.forward(tensor_input)
print "output m is :",out
print "----------- table input --------"
adj_input=np.empty([3,3])
adj_input.fill(2.0)
table_input = [tensor_input,adj_input]
print "input is :",table_input
out = m.forward(table_input)
print "output m is :",out
Gives the output,
creating: createSpatialFullConvolution
--------- tensor input---------
input is : [[[ 9.03998497e-01 4.43054896e-01 6.19571211e-01]
[ 4.24573060e-01 3.29886286e-04 5.48427154e-02]
[ 8.99004782e-01 3.25514441e-01 6.85294650e-01]]]
output m is : [[[-0.04712385 0.21949144 0.0843184 0.14336972]
[-0.28748769 0.39192575 0.00372696 0.27235305]
[-0.16292028 0.41943201 0.03476509 0.18813471]
[-0.28051955 0.29929382 -0.0689255 0.28749463]]
[[-0.21336153 -0.35994443 -0.29239666 -0.38612381]
[-0.33000433 -0.41727966 -0.36827195 -0.34524575]
[-0.2410759 -0.38439807 -0.27613443 -0.39401439]
[-0.38188276 -0.36746511 -0.37627563 -0.34141305]]]
----------- table input --------
input is : [array([[[ 9.03998497e-01, 4.43054896e-01, 6.19571211e-01],
[ 4.24573060e-01, 3.29886286e-04, 5.48427154e-02],
[ 8.99004782e-01, 3.25514441e-01, 6.85294650e-01]]]), array([[ 2., 2., 2.],
[ 2., 2., 2.],
[ 2., 2., 2.]])]
output m is : [[[-0.04712385 0.21949144 0.0843184 0.14336972]
[-0.28748769 0.39192575 0.00372696 0.27235305]
[-0.16292028 0.41943201 0.03476509 0.18813471]
[-0.28051955 0.29929382 -0.0689255 0.28749463]]
[[-0.21336153 -0.35994443 -0.29239666 -0.38612381]
[-0.33000433 -0.41727966 -0.36827195 -0.34524575]
[-0.2410759 -0.38439807 -0.27613443 -0.39401439]
[-0.38188276 -0.36746511 -0.37627563 -0.34141305]]]
SpatialConvolutionMap
Scala:
val layer = SpatialConvolutionMap(
connTable,
kW,
kH,
dW = 1,
dH = 1,
padW = 0,
padH = 0)
Python:
layer = SpatialConvolutionMap(
conn_table,
kw,
kh,
dw=1,
dh=1,
pad_w=0,
pad_h=0)
This class is a generalization of SpatialConvolution.
It uses a generic connection table between input and output features.
The SpatialConvolution is equivalent to using a full connection table.
A Connection Table is the mapping of input/output feature map, stored in a 2D Tensor. The first column is the input feature maps. The second column is output feature maps.
Full Connection table:
val conn = SpatialConvolutionMap.full(nin: Int, nout: In)
One to One connection table:
val conn = SpatialConvolutionMap.oneToOne(nfeat: Int)
Random Connection table:
val conn = SpatialConvolutionMap.random(nin: Int, nout: Int, nto: Int)
Scala example:
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric.NumericFloat
import com.intel.analytics.bigdl.nn._
import com.intel.analytics.bigdl.tensor._
val conn = SpatialConvolutionMap.oneToOne(3)
conn
is
conn: com.intel.analytics.bigdl.tensor.Tensor[Float] =
1.0 1.0
2.0 2.0
3.0 3.0
[com.intel.analytics.bigdl.tensor.DenseTensor$mcF$sp of size 3x2]
val module = SpatialConvolutionMap(SpatialConvolutionMap.oneToOne(3), 2, 2)
pritnln(module.forward(Tensor.range(1, 48, 1).resize(3, 4, 4)))
Gives the output,
com.intel.analytics.bigdl.tensor.Tensor[Float] =
(1,.,.) =
4.5230045 5.8323975 7.1417904
9.760576 11.069969 12.379362
14.998148 16.30754 17.616934
(2,.,.) =
-5.6122046 -5.9227824 -6.233361
-6.8545156 -7.165093 -7.4756703
-8.096827 -8.407404 -8.71798
(3,.,.) =
13.534529 13.908197 14.281864
15.029203 15.402873 15.77654
16.523876 16.897545 17.271214
[com.intel.analytics.bigdl.tensor.DenseTensor of size 3x3x3]
Python example:
from bigdl.nn.layer import *
import numpy as np
module = SpatialConvolutionMap(np.array([(1, 1), (2, 2), (3, 3)]), 2, 2)
print(module.forward(np.arange(1, 49, 1).reshape(3, 4, 4)))
Gives the output,
[array([[[-1.24280548, -1.70889318, -2.17498088],
[-3.10715604, -3.57324386, -4.03933144],
[-4.97150755, -5.43759441, -5.90368223]],
[[-5.22062826, -5.54696751, -5.87330723],
[-6.52598572, -6.85232496, -7.17866373],
[-7.8313427 , -8.15768337, -8.48402214]],
[[ 0.5065825 , 0.55170798, 0.59683061],
[ 0.68707776, 0.73219943, 0.77732348],
[ 0.86757064, 0.91269422, 0.95781779]]], dtype=float32)]