Model Save
BigDL supports saving models to local file system, HDFS and AWS S3. After a model is created, you can use save
on created model to save it. Below example shows how to save a model.
Scala example
import com.intel.analytics.bigdl.nn._
import com.intel.analytics.bigdl.numeric.NumericFloat
val model = Sequential().add(Linear(10, 5)).add(Sigmoid()).add(SoftMax())
//...train
model.save("/tmp/model.bigdl", true) //save to local fs
model.save("hdfs://...") //save to hdfs
model.save("s3://...") //save to s3
Python example
from bigdl.nn.layer import *
from bigdl.util.common import *
from bigdl.optim.optimizer import *
model = Sequential().add(Linear(10, 5)).add(Sigmoid()).add(SoftMax())
//...train
model.save("/tmp/model.bigdl", True) //save to local fs
model.save("hdfs://...") //save to hdfs
model.save("s3://...") //save to s3
In model.save
, the first parameter is the path where we want to save our model, the second paramter is to specify if we need to overwrite the file if it already exists, it's set to false by default
Model Load
Use Module.load
(in Scala) or Model.load
(in Python) to load an existing model. Module
(Scala) or Model
(Python) is a utilily class provided in BigDL. We just need to specify the model path where we previously saved the model to load it to memory for resume training or prediction purpose.
Scala example
val model = Module.load("/tmp/model.bigdl") //load from local fs
val model = Module.load("hdfs://...") //load from hdfs
val model = Module.load("s3://...") //load from s3
Python example
model = Model.load("/tmp/model.bigdl") //load from local fs
model = Model.load("hdfs://...") //load from hdfs
model = Model.load("s3://...") //load from s3
Model Evaluation
Scala
model.evaluate(dataset,vMethods,batchSize = None)
Python
model.test(val_rdd, batch_size, val_methods)
Use evaluate
on the model for evaluation. The parameter dataset
(Scala) or val_rdd
(Python) in is the validation dataset, and vMethods
(Scala) or val_methods
(Python) is an array of ValidationMethods. Refer to Metrics for the list of defined ValidationMethods.
Scala example
import com.intel.analytics.bigdl.dataset.Sample
import com.intel.analytics.bigdl.nn._
import com.intel.analytics.bigdl.numeric.NumericFloat
import com.intel.analytics.bigdl.optim.Top1Accuracy
import com.intel.analytics.bigdl.tensor.Tensor
//create some dummy dataset for evaluation
val feature = Tensor(10).rand()
val label = Tensor(1).randn()
val testSample = Sample(feature, label)
//sc is is the SparkContxt instance
val testSet = sc.parallelize(Seq(testSample))
//train a new model or load an existing model
//val model=...
val evaluateResult = model.evaluate(testSet, Array(new Top1Accuracy))
Python example
from bigdl.nn.layer import *
from bigdl.util.common import *
from bigdl.optim.optimizer import *
import numpy as np
samples=[Sample.from_ndarray(np.array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0]), np.array([2.0]))]
testSet = sc.parallelize(samples)
//train a model or load an existing model...
//model = ...
evaluateResult = model.test(testSet, 1, ["Top1Accuracy"])
Model Prediction
Scala
model.predict(dataset)
model.predictClass(dataset)
Python
model.predict(data_rdd)
model.predict_class(data_rdd)
Use predict
or predictClass
or predict_class
on model for Prediction. predict
returns return the probability distribution of each class, and predictClass
/predict_class
returns the predict label. They both accepts the test dataset as parameter.
Scala example
import com.intel.analytics.bigdl.dataset.Sample
import com.intel.analytics.bigdl.nn._
import com.intel.analytics.bigdl.numeric.NumericFloat
import com.intel.analytics.bigdl.optim.Top1Accuracy
import com.intel.analytics.bigdl.tensor.Tensor
//create some dummy dataset for prediction as example
val feature = Tensor(10).rand()
val label = Tensor(1).randn()
val predictSample = Sample(feature, label)
val predictSet = sc.parallelize(Seq(predictSample))
//train a new model or load an existing model
//val model=...
val preductResult = model.predict(predictSet)
Python example
from bigdl.nn.layer import *
from bigdl.util.common import *
from bigdl.optim.optimizer import *
import numpy as np
samples=[Sample.from_ndarray(np.array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0]), np. array([2.0]))]
predictSet = sc.parallelize(samples)
//train a model or load an existing model...
//model = ...
preductResult = model.predict(predictSet)