bigdl.dlframes package¶
Submodules¶
bigdl.dlframes.dl_classifier module¶
- 
class bigdl.dlframes.dl_classifier.DLClassifier(model, criterion, feature_size, bigdl_type='float')[source]¶
- 
class bigdl.dlframes.dl_classifier.DLClassifierModel(model, featureSize, jvalue=None, bigdl_type='float')[source]¶
- 
class bigdl.dlframes.dl_classifier.DLEstimator(model, criterion, feature_size, label_size, jvalue=None, bigdl_type='float')[source]¶
- Bases: - pyspark.ml.base.Estimator,- pyspark.ml.param.shared.HasFeaturesCol,- pyspark.ml.param.shared.HasLabelCol,- pyspark.ml.param.shared.HasPredictionCol,- bigdl.dlframes.dl_classifier.HasBatchSize,- bigdl.dlframes.dl_classifier.HasMaxEpoch,- bigdl.dlframes.dl_classifier.HasLearningRate,- bigdl.util.common.JavaValue
- 
class bigdl.dlframes.dl_classifier.DLModel(model, featureSize, jvalue=None, bigdl_type='float')[source]¶
- Bases: - pyspark.ml.base.Model,- pyspark.ml.param.shared.HasFeaturesCol,- pyspark.ml.param.shared.HasPredictionCol,- bigdl.dlframes.dl_classifier.HasBatchSize,- bigdl.dlframes.dl_classifier.HasFeatureSize,- bigdl.util.common.JavaValue
- 
class bigdl.dlframes.dl_classifier.HasBatchSize[source]¶
- Bases: - pyspark.ml.param.Params- Mixin for param batchSize: batch size. - 
batchSize= Param(parent='undefined', name='batchSize', doc='batchSize')¶
- param for batch size. 
 
- 
- 
class bigdl.dlframes.dl_classifier.HasFeatureSize[source]¶
- Bases: - pyspark.ml.param.Params- 
featureSize= Param(parent='undefined', name='featureSize', doc='size of the feature')¶
 
- 
bigdl.dlframes.dl_image_reader module¶
- 
class bigdl.dlframes.dl_image_reader.DLImageReader[source]¶
- Primary DataFrame-based image loading interface, defining API to read images from files to DataFrame. - 
static readImages(path, sc=None, minParitions=1, bigdl_type='float')[source]¶
- Read the directory of images into DataFrame from the local or remote source. :param path Directory to the input data files, the path can be comma separated paths as the list of inputs. Wildcards path are supported similarly to sc.binaryFiles(path). :param min_partitions A suggestion value of the minimal splitting number for input data. :return DataFrame with a single column “image”; Each record in the column represents one image record: Row (uri, height, width, channels, CvType, bytes) 
 
- 
static 
bigdl.dlframes.dl_image_transformer module¶
- 
class bigdl.dlframes.dl_image_transformer.DLImageTransformer(transformer, jvalue=None, bigdl_type='float')[source]¶
- Bases: - pyspark.ml.wrapper.JavaTransformer,- pyspark.ml.param.shared.HasInputCol,- pyspark.ml.param.shared.HasOutputCol,- bigdl.util.common.JavaValue- Provides DataFrame-based API for image pre-processing and feature transformation. DLImageTransformer follows the Spark Transformer API pattern and can be used as one stage in Spark ML pipeline. - The input column can be either DLImageSchema.byteSchema or DLImageSchema.floatSchema. If using DLImageReader, the default format is DLImageSchema.byteSchema The output column is always DLImageSchema.floatSchema.