com.intel.analytics.bigdl.nn.mkldnn

SpatialBatchNormalization

class SpatialBatchNormalization extends AbstractModule[Activity, Activity, Float] with MklDnnLayer with Initializable with MklInt8Convertible

Linear Supertypes
MklInt8Convertible, Initializable, MklDnnLayer, MklDnnModule, MklDnnModuleHelper, MemoryOwner, AbstractModule[Activity, Activity, Float], InferShape, Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. SpatialBatchNormalization
  2. MklInt8Convertible
  3. Initializable
  4. MklDnnLayer
  5. MklDnnModule
  6. MklDnnModuleHelper
  7. MemoryOwner
  8. AbstractModule
  9. InferShape
  10. Serializable
  11. Serializable
  12. AnyRef
  13. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Instance Constructors

  1. new SpatialBatchNormalization(nOutput: Int, eps: Double = 1.0E-5, momentum: Double = 0.1, initWeight: Tensor[Float] = null, initBias: Tensor[Float] = null, initGradWeight: Tensor[Float] = null, initGradBias: Tensor[Float] = null, format: DataFormat = ...)

Type Members

  1. class SwitchablePrimitives extends AnyRef

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. var _gradInputFormats: Array[MemoryData]

    Attributes
    protected
    Definition Classes
    MklDnnLayer
  7. var _gradOutputFormats: Array[MemoryData]

    Attributes
    protected
    Definition Classes
    MklDnnLayer
  8. var _gradOutputFormatsForWeight: Array[MemoryData]

    Attributes
    protected
    Definition Classes
    MklDnnLayer
  9. var _inputFormats: Array[MemoryData]

    Attributes
    protected
    Definition Classes
    MklDnnLayer
  10. var _outputFormats: Array[MemoryData]

    Attributes
    protected
    Definition Classes
    MklDnnLayer
  11. implicit lazy val _this: MemoryOwner

    Attributes
    protected
    Definition Classes
    MklDnnModuleHelper
  12. def accGradParameters(input: Activity, gradOutput: Activity): Unit

    Computing the gradient of the module with respect to its own parameters.

    Computing the gradient of the module with respect to its own parameters. Many modules do not perform this step as they do not have any parameters. The state variable name for the parameters is module dependent. The module is expected to accumulate the gradients with respect to the parameters in some variable.

    input
    gradOutput

    Definition Classes
    SpatialBatchNormalizationAbstractModule
  13. var accGradientPrimitives: Array[Long]

    Attributes
    protected
    Definition Classes
    MklDnnLayer
  14. def apply(name: String): Option[AbstractModule[Activity, Activity, Float]]

    Find a module with given name.

    Find a module with given name. If there is no module with given name, it will return None. If there are multiple modules with the given name, an exception will be thrown.

    name
    returns

    Definition Classes
    AbstractModule
  15. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  16. def backward(input: Activity, gradOutput: Activity): Activity

    Performs a back-propagation step through the module, with respect to the given input.

    Performs a back-propagation step through the module, with respect to the given input. In general this method makes the assumption forward(input) has been called before, with the same input. This is necessary for optimization reasons. If you do not respect this rule, backward() will compute incorrect gradients.

    input

    input data

    gradOutput

    gradient of next layer

    returns

    gradient corresponding to input data

    Definition Classes
    AbstractModule
  17. var backwardTime: Long

    Attributes
    protected
    Definition Classes
    AbstractModule
  18. var biasFactor: Float

  19. var biasInitMethod: InitializationMethod

    Attributes
    protected
    Definition Classes
    Initializable
  20. def calcScales(inputActvt: Activity): Unit

    Calculate the required scales for converting int8 modules Currently there are four type of modules should be supported: 1) Graph: calculate scales for input and output 2) Linear: calculate scales for input, output and weight 3) Spatial Convolution: calculate scales for input, output and weight 4) Sequential: calculate scales for input, output as well as the scales of submodules 5) ConcatTable: calculate scales for input, output as well as the scales of submodules

    Calculate the required scales for converting int8 modules Currently there are four type of modules should be supported: 1) Graph: calculate scales for input and output 2) Linear: calculate scales for input, output and weight 3) Spatial Convolution: calculate scales for input, output and weight 4) Sequential: calculate scales for input, output as well as the scales of submodules 5) ConcatTable: calculate scales for input, output as well as the scales of submodules

    inputActvt

    input activity

    Definition Classes
    MklInt8Convertible
  21. def clearState(): SpatialBatchNormalization.this.type

    Clear cached activities to save storage space or network bandwidth.

    Clear cached activities to save storage space or network bandwidth. Note that we use Tensor.set to keep some information like tensor share

    The subclass should override this method if it allocate some extra resource, and call the super.clearState in the override method

    returns

    Definition Classes
    AbstractModule
  22. final def clone(deepCopy: Boolean): AbstractModule[Activity, Activity, Float]

    Clone the module, deep or shallow copy

    Clone the module, deep or shallow copy

    deepCopy
    returns

    Definition Classes
    AbstractModule
  23. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  24. final def cloneModule(): SpatialBatchNormalization.this.type

    Clone the model

    Clone the model

    returns

    Definition Classes
    AbstractModule
  25. val eps: Double

  26. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  27. def equals(other: Any): Boolean

    Definition Classes
    AbstractModule → AnyRef → Any
  28. def evaluate(): SpatialBatchNormalization.this.type

    Set the module to evaluate mode

    Set the module to evaluate mode

    returns

    Definition Classes
    SpatialBatchNormalizationAbstractModule
  29. final def evaluate(dataSet: LocalDataSet[MiniBatch[Float]], vMethods: Array[_ <: ValidationMethod[Float]]): Array[(ValidationResult, ValidationMethod[Float])]

    use ValidationMethod to evaluate module on the given local dataset

    use ValidationMethod to evaluate module on the given local dataset

    dataSet
    vMethods
    returns

    Definition Classes
    AbstractModule
  30. final def evaluate(dataset: RDD[MiniBatch[Float]], vMethods: Array[_ <: ValidationMethod[Float]]): Array[(ValidationResult, ValidationMethod[Float])]

    use ValidationMethod to evaluate module on the given rdd dataset

    use ValidationMethod to evaluate module on the given rdd dataset

    dataset
    vMethods
    returns

    Definition Classes
    AbstractModule
  31. final def evaluate(dataset: RDD[Sample[Float]], vMethods: Array[_ <: ValidationMethod[Float]], batchSize: Option[Int] = None): Array[(ValidationResult, ValidationMethod[Float])]

    use ValidationMethod to evaluate module on the given rdd dataset

    use ValidationMethod to evaluate module on the given rdd dataset

    dataset

    dataset for test

    vMethods

    validation methods

    batchSize

    total batchsize of all partitions, optional param and default 4 * partitionNum of dataset

    returns

    Definition Classes
    AbstractModule
  32. final def evaluateImage(imageFrame: ImageFrame, vMethods: Array[_ <: ValidationMethod[Float]], batchSize: Option[Int] = None): Array[(ValidationResult, ValidationMethod[Float])]

    use ValidationMethod to evaluate module on the given ImageFrame

    use ValidationMethod to evaluate module on the given ImageFrame

    imageFrame

    ImageFrame for valudation

    vMethods

    validation methods

    batchSize

    total batch size of all partitions

    returns

    Definition Classes
    AbstractModule
  33. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  34. val format: DataFormat

  35. final def forward(input: Activity): Activity

    Takes an input object, and computes the corresponding output of the module.

    Takes an input object, and computes the corresponding output of the module. After a forward, the output state variable should have been updated to the new value.

    input

    input data

    returns

    output data

    Definition Classes
    AbstractModule
  36. var forwardTime: Long

    Attributes
    protected
    Definition Classes
    AbstractModule
  37. def freeze(names: String*): SpatialBatchNormalization.this.type

    freeze the module, i.

    freeze the module, i.e. their parameters(weight/bias, if exists) are not changed in training process if names is not empty, set an array of layers that match the given names to be "freezed",

    names

    an array of layer names

    returns

    current graph model

    Definition Classes
    AbstractModule
  38. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  39. def getExtraParameter(): Array[Tensor[Float]]

    Get extra parameter in this module.

    Get extra parameter in this module. Extra parameter means the trainable parameters beside weight and bias. Such as runningMean and runningVar in BatchNormalization.

    The subclass should override this method if it has some parameters besides weight and bias.

    returns

    an array of tensor

    Definition Classes
    SpatialBatchNormalizationAbstractModule
  40. def getInputDimMask(): Int

    Get dimension mask of input

    Get dimension mask of input

    returns

    inputDimMask field which stores value of input dimension mask

    Definition Classes
    MklInt8Convertible
  41. def getInputScales(): Array[Array[Float]]

    Get input scales

    Get input scales

    returns

    field which stores value of input scales

    Definition Classes
    MklInt8Convertible
  42. final def getInputShape(): Shape

    Return the inputShape for the current Layer and the first dim is batch.

    Return the inputShape for the current Layer and the first dim is batch.

    Definition Classes
    InferShape
  43. final def getName(): String

    Get the module name, default name is className@namePostfix

    Get the module name, default name is className@namePostfix

    returns

    Definition Classes
    AbstractModule
  44. final def getNumericType(): TensorDataType

    Get numeric type of module parameters

    Get numeric type of module parameters

    returns

    Definition Classes
    AbstractModule
  45. def getOutputScales(): Array[Array[Float]]

    Get output scales

    Get output scales

    returns

    field which stores value of output scales

    Definition Classes
    MklInt8Convertible
  46. final def getOutputShape(): Shape

    Return the outputShape for the current Layer and the first dim is batch.

    Return the outputShape for the current Layer and the first dim is batch.

    Definition Classes
    InferShape
  47. def getParametersTable(): Table

    This function returns a table contains ModuleName, the parameter names and parameter value in this module.

    This function returns a table contains ModuleName, the parameter names and parameter value in this module.

    The result table is a structure of Table(ModuleName -> Table(ParameterName -> ParameterValue)), and the type is Table[String, Table[String, Tensor[T]]].

    For example, get the weight of a module named conv1: table[Table]("conv1")[Tensor[T]]("weight").

    The names of the parameters follow such convention:

    1. If there's one parameter, the parameter is named as "weight", the gradient is named as "gradWeight"

    2. If there're two parameters, the first parameter is named as "weight", the first gradient is named as "gradWeight"; the second parameter is named as "bias", the seconcd gradient is named as "gradBias"

    3. If there're more parameters, the weight is named as "weight" with a seq number as suffix, the gradient is named as "gradient" with a seq number as suffix

    Custom modules should override this function the default impl if the convention doesn't meet the requirement.

    returns

    Table

    Definition Classes
    AbstractModule
  48. final def getPrintName(): String

    Attributes
    protected
    Definition Classes
    AbstractModule
  49. final def getScaleB(): Double

    Get the scale of gradientBias

    Get the scale of gradientBias

    Definition Classes
    AbstractModule
  50. final def getScaleW(): Double

    Get the scale of gradientWeight

    Get the scale of gradientWeight

    Definition Classes
    AbstractModule
  51. def getTimes(): Array[(AbstractModule[_ <: Activity, _ <: Activity, Float], Long, Long)]

    Get the forward/backward cost time for the module or its submodules

    Get the forward/backward cost time for the module or its submodules

    returns

    Definition Classes
    AbstractModule
  52. final def getTimesGroupByModuleType(): Array[(String, Long, Long)]

    Get the forward/backward cost time for the module or its submodules and group by module type.

    Get the forward/backward cost time for the module or its submodules and group by module type.

    returns

    (module type name, forward time, backward time)

    Definition Classes
    AbstractModule
  53. def getUpdateGradInputMemoryPrimitives(): Array[Long]

    Definition Classes
    MklDnnLayer
  54. def getUpdateOutputMemoryPrimitives(): Array[Long]

    Definition Classes
    MklDnnLayer
  55. def getWeightDimMask(): Int

    Get dimension mask of weight

    Get dimension mask of weight

    returns

    weightDimMask which stores value of weight mask

    Definition Classes
    MklInt8Convertible
  56. def getWeightScales(): Array[Array[Float]]

    Get weight scales

    Get weight scales

    returns

    field which stores value of weight scales

    Definition Classes
    MklInt8Convertible
  57. final def getWeightsBias(): Array[Tensor[Float]]

    Get weight and bias for the module

    Get weight and bias for the module

    returns

    array of weights and bias

    Definition Classes
    AbstractModule
  58. var gradInput: Activity

    The cached gradient of activities.

    The cached gradient of activities. So we don't compute it again when need it

    Definition Classes
    AbstractModule
  59. val gradWeightAndBias: TensorMMap

  60. final def hasName: Boolean

    Whether user set a name to the module before

    Whether user set a name to the module before

    returns

    Definition Classes
    AbstractModule
  61. def hashCode(): Int

    Definition Classes
    AbstractModule → AnyRef → Any
  62. def initActivity(formats: Array[MemoryData]): Activity

    Attributes
    protected
    Definition Classes
    MklDnnModuleHelper
  63. def initTensor(format: MemoryData): Tensor[_]

    Attributes
    protected
    Definition Classes
    MklDnnModuleHelper
  64. var inputDimMask: Int

    Attributes
    protected
    Definition Classes
    MklInt8Convertible
  65. def inputs(first: (ModuleNode[Float], Int), nodesWithIndex: (ModuleNode[Float], Int)*): ModuleNode[Float]

    Build graph: some other modules point to current module

    Build graph: some other modules point to current module

    first

    distinguish from another inputs when input parameter list is empty

    nodesWithIndex

    upstream module nodes and the output tensor index. The start index is 1.

    returns

    node containing current module

    Definition Classes
    AbstractModule
  66. def inputs(nodes: Array[ModuleNode[Float]]): ModuleNode[Float]

    Build graph: some other modules point to current module

    Build graph: some other modules point to current module

    nodes

    upstream module nodes in an array

    returns

    node containing current module

    Definition Classes
    AbstractModule
  67. def inputs(nodes: ModuleNode[Float]*): ModuleNode[Float]

    Build graph: some other modules point to current module

    Build graph: some other modules point to current module

    nodes

    upstream module nodes

    returns

    node containing current module

    Definition Classes
    AbstractModule
  68. var inputsFormats: Seq[Int]

    Attributes
    protected
    Definition Classes
    AbstractModule
  69. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  70. final def isTraining(): Boolean

    Check if the model is in training mode

    Check if the model is in training mode

    returns

    Definition Classes
    AbstractModule
  71. var line: String

    Attributes
    protected
    Definition Classes
    AbstractModule
  72. final def loadModelWeights(srcModel: Module[Float], matchAll: Boolean = true): SpatialBatchNormalization.this.type

    copy weights from another model, mapping by layer name

    copy weights from another model, mapping by layer name

    srcModel

    model to copy from

    matchAll

    whether to match all layers' weights and bias,

    returns

    current module

    Definition Classes
    AbstractModule
  73. final def loadWeights(weightPath: String, matchAll: Boolean = true): SpatialBatchNormalization.this.type

    load pretrained weights and bias to current module

    load pretrained weights and bias to current module

    weightPath

    file to store weights and bias

    matchAll

    whether to match all layers' weights and bias, if not, only load existing pretrained weights and bias

    returns

    current module

    Definition Classes
    AbstractModule
  74. val momentum: Double

  75. val nOutput: Int

  76. def nativeData(formats: Array[MemoryData]): Array[MemoryData]

    Attributes
    protected
    Definition Classes
    MklDnnModuleHelper
  77. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  78. final def notify(): Unit

    Definition Classes
    AnyRef
  79. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  80. var output: Activity

    The cached output.

    The cached output. So we don't compute it again when need it

    Definition Classes
    AbstractModule
  81. var outputDimMask: Int

    Attributes
    protected
    Definition Classes
    MklInt8Convertible
  82. var outputsFormats: Seq[Int]

    Attributes
    protected
    Definition Classes
    AbstractModule
  83. def parameters(): (Array[Tensor[Float]], Array[Tensor[Float]])

    This function returns two arrays.

    This function returns two arrays. One for the weights and the other the gradients Custom modules should override this function if they have parameters

    returns

    (Array of weights, Array of grad)

    Definition Classes
    SpatialBatchNormalizationAbstractModule
  84. def paramsMMap(): (Array[TensorMMap], Array[TensorMMap])

    Definition Classes
    SpatialBatchNormalizationMklDnnLayer
  85. final def predict(dataset: RDD[Sample[Float]], batchSize: Int = 1, shareBuffer: Boolean = false): RDD[Activity]

    module predict, return the probability distribution

    module predict, return the probability distribution

    dataset

    dataset for prediction

    batchSize

    total batchSize for all partitions. if -1, default is 4 * partitionNumber of datatset

    shareBuffer

    whether to share same memory for each batch predict results

    Definition Classes
    AbstractModule
  86. final def predictClass(dataset: RDD[Sample[Float]], batchSize: Int = 1): RDD[Int]

    module predict, return the predict label

    module predict, return the predict label

    dataset

    dataset for prediction

    batchSize

    total batchSize for all partitions. if -1, default is 4 * partitionNumber of dataset

    Definition Classes
    AbstractModule
  87. final def predictImage(imageFrame: ImageFrame, outputLayer: String = null, shareBuffer: Boolean = false, batchPerPartition: Int = 4, predictKey: String = ImageFeature.predict, featurePaddingParam: Option[PaddingParam[Float]] = None): ImageFrame

    model predict images, return imageFrame with predicted tensor, if you want to call predictImage multiple times, it is recommended to use Predictor for DistributedImageFrame or LocalPredictor for LocalImageFrame

    model predict images, return imageFrame with predicted tensor, if you want to call predictImage multiple times, it is recommended to use Predictor for DistributedImageFrame or LocalPredictor for LocalImageFrame

    imageFrame

    imageFrame that contains images

    outputLayer

    if outputLayer is not null, the output of layer that matches outputLayer will be used as predicted output

    shareBuffer

    whether to share same memory for each batch predict results

    batchPerPartition

    batch size per partition, default is 4

    predictKey

    key to store predicted result

    featurePaddingParam

    featurePaddingParam if the inputs have variant size

    returns

    Definition Classes
    AbstractModule
  88. def processInputs(first: (ModuleNode[Float], Int), nodesWithIndex: (ModuleNode[Float], Int)*): ModuleNode[Float]

    Attributes
    protected
    Definition Classes
    AbstractModule
  89. def processInputs(nodes: Seq[ModuleNode[Float]]): ModuleNode[Float]

    Attributes
    protected
    Definition Classes
    AbstractModule
  90. final def quantize(): Module[Float]

    Quantize this module, which reduces the precision of the parameter.

    Quantize this module, which reduces the precision of the parameter. Get a higher speed with a little accuracy cost.

    returns

    Definition Classes
    AbstractModule
  91. def registerResource(m: Releasable): Unit

    Definition Classes
    MemoryOwner
  92. def release(): Unit

    if the model contains native resources such as aligned memory, we should release it by manual.

    if the model contains native resources such as aligned memory, we should release it by manual. JVM GC can't release them reliably.

    Definition Classes
    MklDnnLayerAbstractModule
  93. def releaseResources(): Unit

    Definition Classes
    MemoryOwner
  94. def relu: Boolean

  95. def reset(): Unit

    Reset module parameters, which is re-initialize the parameter with given initMethod

    Reset module parameters, which is re-initialize the parameter with given initMethod

    Definition Classes
    SpatialBatchNormalizationInitializableAbstractModule
  96. def resetTimes(): Unit

    Reset the forward/backward record time for the module or its submodules

    Reset the forward/backward record time for the module or its submodules

    returns

    Definition Classes
    AbstractModule
  97. var runtime: MklDnnRuntime

    MklDnn runtime, which includes a MKL-DNN engine and a MKL-DNN stream.

    MklDnn runtime, which includes a MKL-DNN engine and a MKL-DNN stream. Note that this instance will be erased when send to remote worker, so you should recreate a MklDnnRuntime.

    Attributes
    protected
    Definition Classes
    MklDnnModule
  98. final def saveCaffe(prototxtPath: String, modelPath: String, useV2: Boolean = true, overwrite: Boolean = false): SpatialBatchNormalization.this.type

    Save this module to path in caffe readable format

    Save this module to path in caffe readable format

    prototxtPath
    modelPath
    useV2
    overwrite
    returns

    Definition Classes
    AbstractModule
  99. final def saveDefinition(path: String, overWrite: Boolean = false): SpatialBatchNormalization.this.type

    Save this module definition to path.

    Save this module definition to path.

    path

    path to save module, local file system, HDFS and Amazon S3 is supported. HDFS path should be like "hdfs://[host]:[port]/xxx" Amazon S3 path should be like "s3a://bucket/xxx"

    overWrite

    if overwrite

    returns

    self

    Definition Classes
    AbstractModule
  100. final def saveModule(path: String, weightPath: String = null, overWrite: Boolean = false): SpatialBatchNormalization.this.type

    Save this module to path with protobuf format

    Save this module to path with protobuf format

    path

    path to save module, local file system, HDFS and Amazon S3 is supported. HDFS path should be like "hdfs://[host]:[port]/xxx" Amazon S3 path should be like "s3a://bucket/xxx"

    weightPath

    where to store weight

    overWrite

    if overwrite

    returns

    self

    Definition Classes
    AbstractModule
  101. final def saveTF(inputs: Seq[(String, Seq[Int])], path: String, byteOrder: ByteOrder = ByteOrder.LITTLE_ENDIAN, dataFormat: TensorflowDataFormat = TensorflowDataFormat.NHWC): SpatialBatchNormalization.this.type

    Save this module to path in tensorflow readable format

    Save this module to path in tensorflow readable format

    inputs
    path
    byteOrder
    dataFormat
    returns

    Definition Classes
    AbstractModule
  102. final def saveTorch(path: String, overWrite: Boolean = false): SpatialBatchNormalization.this.type

    Save this module to path in torch7 readable format

    Save this module to path in torch7 readable format

    path
    overWrite
    returns

    Definition Classes
    AbstractModule
  103. final def saveWeights(path: String, overWrite: Boolean): Unit

    save weights and bias to file

    save weights and bias to file

    path

    file to save

    overWrite

    whether to overwrite or not

    Definition Classes
    AbstractModule
  104. var scaleB: Double

    Attributes
    protected
    Definition Classes
    AbstractModule
  105. var scaleFactor: Float

  106. var scaleW: Double

    The scale of gradient weight and gradient bias before gradParameters being accumulated.

    The scale of gradient weight and gradient bias before gradParameters being accumulated.

    Attributes
    protected
    Definition Classes
    AbstractModule
  107. def setExtraParameter(extraParam: Array[Tensor[Float]]): SpatialBatchNormalization.this.type

    Set extra parameter to this module.

    Set extra parameter to this module. Extra parameter means the trainable parameters beside weight and bias. Such as runningMean and runningVar in BatchNormalization.

    returns

    this

    Definition Classes
    AbstractModule
  108. def setInitMethod(initMethod: Array[InitializationMethod]): SpatialBatchNormalization.this.type

    Definition Classes
    Initializable
  109. def setInitMethod(weightInitMethod: InitializationMethod = null, biasInitMethod: InitializationMethod = null): SpatialBatchNormalization.this.type

    Definition Classes
    Initializable
  110. def setInputDimMask(mask: Int, overrideSubmodules: Boolean = false): Unit

    Set dimension mask of input

    Set dimension mask of input

    mask

    value of input dimension mask to be set

    overrideSubmodules

    when set it to true, update mask including itself and submodules, otherwise only update mask to module itself.

    returns

    Unit

    Definition Classes
    MklInt8Convertible
  111. def setInputFormats(formats: Seq[Int]): SpatialBatchNormalization.this.type

    set input formats for graph

    set input formats for graph

    formats
    returns

    Definition Classes
    AbstractModule
  112. def setInputScales(inScales: Array[Array[Float]]): Unit

    Set input scales Clear existing buffer of input scales, and place updated scales into the cleared buffer

    Set input scales Clear existing buffer of input scales, and place updated scales into the cleared buffer

    inScales

    value of input scales to be set

    returns

    Unit

    Definition Classes
    MklInt8Convertible
  113. final def setLine(line: String): SpatialBatchNormalization.this.type

    Set the line separator when print the module

    Set the line separator when print the module

    line
    returns

    Definition Classes
    AbstractModule
  114. final def setName(name: String): SpatialBatchNormalization.this.type

    Set the module name

    Set the module name

    name
    returns

    Definition Classes
    AbstractModule
  115. def setOutputDimMask(mask: Int, overrideSubmodules: Boolean = false): Unit

    Set dimension mask of output

    Set dimension mask of output

    mask

    value of output dimension mask to be set

    overrideSubmodules

    when set it to true, update mask in full scope including itself and submodules, otherwise only update mask to module itself.

    returns

    Unit

    Definition Classes
    MklInt8Convertible
  116. def setOutputFormats(formats: Seq[Int]): SpatialBatchNormalization.this.type

    set output formats for graph

    set output formats for graph

    formats
    returns

    Definition Classes
    AbstractModule
  117. def setOutputScales(outScales: Array[Array[Float]]): Unit

    Set output scales Clear existing buffer of output scales, and place updated scales into the cleared buffer

    Set output scales Clear existing buffer of output scales, and place updated scales into the cleared buffer

    outScales

    value of output scales to be set

    returns

    Unit

    Definition Classes
    MklInt8Convertible
  118. def setQuantize(value: Boolean): SpatialBatchNormalization.this.type

    Definition Classes
    MklDnnLayerMklDnnModule
  119. def setReLU(value: Boolean): SpatialBatchNormalization.this.type

  120. def setRuntime(runtime: MklDnnRuntime): Unit

    Definition Classes
    MklDnnModule
  121. def setScaleB(b: Double): SpatialBatchNormalization.this.type

    Set the scale of gradientBias

    Set the scale of gradientBias

    b

    the value of the scale of gradientBias

    returns

    this

    Definition Classes
    AbstractModule
  122. def setScaleW(w: Double): SpatialBatchNormalization.this.type

    Set the scale of gradientWeight

    Set the scale of gradientWeight

    w

    the value of the scale of gradientWeight

    returns

    this

    Definition Classes
    AbstractModule
  123. def setWeightDimMask(mask: Int, overrideSubmodules: Boolean = false): Unit

    Set dimension mask for weight

    Set dimension mask for weight

    mask

    value of weight mask to be set

    overrideSubmodules

    when set it to true, update mask in full scope including itself and submodules, otherwise only update mask to module itself.

    returns

    Unit

    Definition Classes
    MklInt8Convertible
  124. def setWeightScales(weightScales: Array[Array[Float]]): Unit

    Set weight scales Clear existing buffer of weight scales, and place updated scales into the cleared buffer

    Set weight scales Clear existing buffer of weight scales, and place updated scales into the cleared buffer

    weightScales

    value of weight scales to be set

    returns

    Unit

    Definition Classes
    MklInt8Convertible
  125. final def setWeightsBias(newWeights: Array[Tensor[Float]]): SpatialBatchNormalization.this.type

    Set weight and bias for the module

    Set weight and bias for the module

    newWeights

    array of weights and bias

    returns

    Definition Classes
    AbstractModule
  126. def singleNativeData(formats: Array[MemoryData]): Array[MemoryData]

    Attributes
    protected
    Definition Classes
    MklDnnModuleHelper
  127. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  128. def toGraph(startNodes: ModuleNode[Float]*): Graph[Float]

    Generate graph module with start nodes

    Generate graph module with start nodes

    startNodes
    returns

    Definition Classes
    AbstractModule
  129. def toString(): String

    Definition Classes
    SpatialBatchNormalizationAbstractModule → AnyRef → Any
  130. var train: Boolean

    Module status.

    Module status. It is useful for modules like dropout/batch normalization

    Attributes
    protected
    Definition Classes
    AbstractModule
  131. def training(): SpatialBatchNormalization.this.type

    Set the module to training mode

    Set the module to training mode

    returns

    Definition Classes
    SpatialBatchNormalizationAbstractModule
  132. def unFreeze(names: String*): SpatialBatchNormalization.this.type

    "unfreeze" module, i.

    "unfreeze" module, i.e. make the module parameters(weight/bias, if exists) to be trained(updated) in training process if names is not empty, unfreeze layers that match given names

    names

    array of module names to unFreeze

    Definition Classes
    AbstractModule
  133. def updateGradInput(input: Activity, gradOutput: Activity): Activity

    Computing the gradient of the module with respect to its own input.

    Computing the gradient of the module with respect to its own input. This is returned in gradInput. Also, the gradInput state variable is updated accordingly.

    input
    gradOutput
    returns

    Definition Classes
    SpatialBatchNormalizationMklDnnLayerAbstractModule
  134. var updateGradInputPrimitives: Array[Long]

    Attributes
    protected
    Definition Classes
    MklDnnLayer
  135. def updateOutput(input: Activity): Activity

    Computes the output using the current parameter set of the class and input.

    Computes the output using the current parameter set of the class and input. This function returns the result which is stored in the output field.

    input
    returns

    Definition Classes
    SpatialBatchNormalizationMklDnnLayerAbstractModule
  136. var updateOutputPrimitives: Array[Long]

    MKL-DNN primitives of the module.

    MKL-DNN primitives of the module. Note you should only initialize this field by calling initPrimitives method. This field will be erased when sending model to remote worker. So you need to reinitialize it after sending the model.

    Attributes
    protected
    Definition Classes
    MklDnnLayer
  137. def updateWithNewTensor(from: Array[Tensor[Float]], index: Int, value: Activity): Unit

    Definition Classes
    MklDnnLayer
  138. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  139. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  140. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  141. val weightAndBias: TensorMMap

  142. var weightDimMask: Int

    Attributes
    protected
    Definition Classes
    MklInt8Convertible
  143. var weightInitMethod: InitializationMethod

    Attributes
    protected
    Definition Classes
    Initializable
  144. def zeroGradParameters(): Unit

    If the module has parameters, this will zero the accumulation of the gradients with respect to these parameters.

    If the module has parameters, this will zero the accumulation of the gradients with respect to these parameters. Otherwise, it does nothing.

    Definition Classes
    SpatialBatchNormalizationAbstractModule

Deprecated Value Members

  1. def save(path: String, overWrite: Boolean = false): SpatialBatchNormalization.this.type

    Save this module to path.

    Save this module to path.

    path

    path to save module, local file system, HDFS and Amazon S3 is supported. HDFS path should be like "hdfs://[host]:[port]/xxx" Amazon S3 path should be like "s3a://bucket/xxx"

    overWrite

    if overwrite

    returns

    self

    Definition Classes
    AbstractModule
    Annotations
    @deprecated
    Deprecated

    (Since version 0.3.0) please use recommended saveModule(path, overWrite)

Inherited from MklInt8Convertible

Inherited from Initializable

Inherited from MklDnnLayer

Inherited from MklDnnModule

Inherited from MklDnnModuleHelper

Inherited from MemoryOwner

Inherited from AbstractModule[Activity, Activity, Float]

Inherited from InferShape

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped