com.intel.analytics.bigdl.optim

LarsSGD

object LarsSGD extends Serializable

Linear Supertypes
Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. LarsSGD
  2. Serializable
  3. Serializable
  4. AnyRef
  5. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  7. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  8. def containsLarsSGD[T](optimMethods: Map[String, OptimMethod[T]]): Option[Double]

    Check if there is LarsSGD in optimMethods.

    Check if there is LarsSGD in optimMethods. If so, return the weight decay of the first found LarsSGD. Else, return None

    T
    optimMethods
    returns

    The weight decay of the first found LarsSGD in the optimMethods. Or None if there is not one

  9. def createOptimForModule[T](model: Module[T], trust: Double = 1.0, learningRate: Double = 1e-3, learningRateDecay: Double = 0.01, weightDecay: Double = 0.005, momentum: Double = 0.5, learningRateSchedule: LearningRateSchedule = Default())(implicit arg0: ClassTag[T], ev: TensorNumeric[T]): Map[String, OptimMethod[T]]

    Create a Map(String, OptimMethod) for a container.

    Create a Map(String, OptimMethod) for a container. For each submodule in the container, generate (module.getName(), new Lars[T]) pair in the returned map. The resulting map can be used in setOptimMethods. Note: each Lars optim uses the same LearningRateSchedule

    model

    the container to build LARS optim method for

    trust

    the trust on the learning rate scale, should be in 0 to 1

    learningRate

    learning rate

    learningRateDecay

    learning rate decay

    weightDecay

    weight decay

    momentum

    momentum

    learningRateSchedule

    the learning rate scheduler

  10. def createOptimLRSchedulerForModule[A <: Activity, B <: Activity, T](model: Container[A, B, T], lrScheGenerator: (AbstractModule[Activity, Activity, T]) ⇒ (LearningRateSchedule, Boolean), trust: Double = 1.0, learningRate: Double = 1e-3, learningRateDecay: Double = 0.01, weightDecay: Double = 0.005, momentum: Double = 0.5)(implicit arg0: ClassTag[T], ev: TensorNumeric[T]): Map[String, OptimMethod[T]]

    Create a Map(String, OptimMethod) for a container.

    Create a Map(String, OptimMethod) for a container. For each submodule in the container, generate (module.getName(), new Lars[T]) pair in the returned map. The resulting map can be used in setOptimMethods. This function sets different LearningRateSchedules for different submodules

    model

    the container to build LARS optim method for

    lrScheGenerator

    the learning rate schedule generator for each sub-module. Generator accepts the sub-module that the schedule is linked to. It should return a tuple (learningRateSchedule, isOwner), where isOwner indicates whether the corresponding LARS optim method is responsible for showing the learning rate in getHyperParameter (multiple LARS optim methods may share one learning rate scheduler)

    trust

    the trust on the learning rate scale, should be in 0 to 1

    learningRate

    learning rate

    learningRateDecay

    learning rate decay

    weightDecay

    weight decay

    momentum

    momentum

  11. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  12. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  13. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  14. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  15. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  16. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  17. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  18. final def notify(): Unit

    Definition Classes
    AnyRef
  19. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  20. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  21. def toString(): String

    Definition Classes
    AnyRef → Any
  22. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  23. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  24. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped