com.intel.analytics.bigdl.optim

MeanAveragePrecision

object MeanAveragePrecision extends Serializable

Linear Supertypes
Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. MeanAveragePrecision
  2. Serializable
  3. Serializable
  4. AnyRef
  5. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  7. def classification(nClasses: Int, topK: Int = 1): MeanAveragePrecision[Float]

    Calculate the Mean Average Precision (MAP) for classification output and target The algorithm follows VOC Challenge after 2007 Require class label beginning with 0

    Calculate the Mean Average Precision (MAP) for classification output and target The algorithm follows VOC Challenge after 2007 Require class label beginning with 0

    nClasses

    The number of classes

    topK

    Take top-k confident predictions into account. If k=-1,calculate on all predictions

  8. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  9. def cocoBBox(nClasses: Int, topK: Int = 1, skipClass: Int = 0, iouThres: (Float, Float, Int) = (0.5f, 0.05f, 10)): MeanAveragePrecisionObjectDetection[Float]

    Create MeanAveragePrecision validation method using COCO's algorithm for object detection.

    Create MeanAveragePrecision validation method using COCO's algorithm for object detection. IOU computed by the bounding boxes

    nClasses

    the number of classes (including skipped class)

    topK

    only take topK confident predictions (-1 for all predictions)

    skipClass

    skip calculating on a specific class (e.g. background) the class index starts from 0, or is -1 if no skipping

    iouThres

    the IOU thresholds, (rangeStart, stepSize, numOfThres), inclusive

    returns

    MeanAveragePrecisionObjectDetection

  10. def cocoSegmentation(nClasses: Int, topK: Int = 1, skipClass: Int = 0, iouThres: (Float, Float, Int) = (0.5f, 0.05f, 10)): MeanAveragePrecisionObjectDetection[Float]

    Create MeanAveragePrecision validation method using COCO's algorithm for object detection.

    Create MeanAveragePrecision validation method using COCO's algorithm for object detection. IOU computed by the segmentation masks

    nClasses

    the number of classes (including skipped class)

    topK

    only take topK confident predictions (-1 for all predictions)

    skipClass

    skip calculating on a specific class (e.g. background) the class index starts from 0, or is -1 if no skipping

    iouThres

    the IOU thresholds, (rangeStart, stepSize, numOfThres), inclusive

    returns

    MeanAveragePrecisionObjectDetection

  11. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  12. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  13. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  14. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  15. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  16. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  17. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  18. final def notify(): Unit

    Definition Classes
    AnyRef
  19. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  20. def pascalVOC(nClasses: Int, useVoc2007: Boolean = false, topK: Int = 1, skipClass: Int = 0): MeanAveragePrecisionObjectDetection[Float]

    Create MeanAveragePrecision validation method using Pascal VOC's algorithm for object detection

    Create MeanAveragePrecision validation method using Pascal VOC's algorithm for object detection

    nClasses

    the number of classes

    useVoc2007

    if using the algorithm in Voc2007 (11 points). Otherwise, use Voc2010

    topK

    only take topK confident predictions (-1 for all predictions)

    skipClass

    skip calculating on a specific class (e.g. background) the class index starts from 0, or is -1 if no skipping

    returns

    MeanAveragePrecisionObjectDetection

  21. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  22. def toString(): String

    Definition Classes
    AnyRef → Any
  23. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  24. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  25. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped