com.intel.analytics.bigdl.python.api

PythonBigDLValidator

class PythonBigDLValidator[T] extends PythonBigDL[T]

Linear Supertypes
PythonBigDL[T], Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. PythonBigDLValidator
  2. PythonBigDL
  3. Serializable
  4. Serializable
  5. AnyRef
  6. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Instance Constructors

  1. new PythonBigDLValidator()(implicit arg0: ClassTag[T], ev: TensorNumeric[T])

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. def activityToJTensors(outputActivity: Activity): List[JTensor]

    Definition Classes
    PythonBigDL
  7. def addScheduler(seq: SequentialSchedule, scheduler: LearningRateSchedule, maxIteration: Int): SequentialSchedule

    Definition Classes
    PythonBigDL
  8. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  9. def batching(dataset: DataSet[dataset.Sample[T]], batchSize: Int): DataSet[MiniBatch[T]]

    Definition Classes
    PythonBigDL
  10. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  11. def createAbs(): Abs[T]

    Definition Classes
    PythonBigDL
  12. def createAbsCriterion(sizeAverage: Boolean = true): AbsCriterion[T]

    Definition Classes
    PythonBigDL
  13. def createActivityRegularization(l1: Double, l2: Double): ActivityRegularization[T]

    Definition Classes
    PythonBigDL
  14. def createAdadelta(decayRate: Double = 0.9, Epsilon: Double = 1e-10): Adadelta[T]

    Definition Classes
    PythonBigDL
  15. def createAdagrad(learningRate: Double = 1e-3, learningRateDecay: Double = 0.0, weightDecay: Double = 0.0): Adagrad[T]

    Definition Classes
    PythonBigDL
  16. def createAdam(learningRate: Double = 1e-3, learningRateDecay: Double = 0.0, beta1: Double = 0.9, beta2: Double = 0.999, Epsilon: Double = 1e-8): Adam[T]

    Definition Classes
    PythonBigDL
  17. def createAdamax(learningRate: Double = 0.002, beta1: Double = 0.9, beta2: Double = 0.999, Epsilon: Double = 1e-38): Adamax[T]

    Definition Classes
    PythonBigDL
  18. def createAdd(inputSize: Int): Add[T]

    Definition Classes
    PythonBigDL
  19. def createAddConstant(constant_scalar: Double, inplace: Boolean = false): AddConstant[T]

    Definition Classes
    PythonBigDL
  20. def createAspectScale(scale: Int, scaleMultipleOf: Int, maxSize: Int, resizeMode: Int = 1, useScaleFactor: Boolean = true, minScale: Double = 1): FeatureTransformer

    Definition Classes
    PythonBigDL
  21. def createAttention(hiddenSize: Int, numHeads: Int, attentionDropout: Float): Attention[T]

    Definition Classes
    PythonBigDL
  22. def createBCECriterion(weights: JTensor = null, sizeAverage: Boolean = true): BCECriterion[T]

    Definition Classes
    PythonBigDL
  23. def createBatchNormalization(nOutput: Int, eps: Double = 1e-5, momentum: Double = 0.1, affine: Boolean = true, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null): BatchNormalization[T]

    Definition Classes
    PythonBigDL
  24. def createBiRecurrent(merge: AbstractModule[Table, Tensor[T], T] = null): BiRecurrent[T]

    Definition Classes
    PythonBigDL
  25. def createBifurcateSplitTable(dimension: Int): BifurcateSplitTable[T]

    Definition Classes
    PythonBigDL
  26. def createBilinear(inputSize1: Int, inputSize2: Int, outputSize: Int, biasRes: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): Bilinear[T]

    Definition Classes
    PythonBigDL
  27. def createBilinearFiller(): BilinearFiller.type

    Definition Classes
    PythonBigDL
  28. def createBinaryThreshold(th: Double, ip: Boolean): BinaryThreshold[T]

    Definition Classes
    PythonBigDL
  29. def createBinaryTreeLSTM(inputSize: Int, hiddenSize: Int, gateOutput: Boolean = true, withGraph: Boolean = true): BinaryTreeLSTM[T]

    Definition Classes
    PythonBigDL
  30. def createBottle(module: AbstractModule[Activity, Activity, T], nInputDim: Int = 2, nOutputDim1: Int = Int.MaxValue): Bottle[T]

    Definition Classes
    PythonBigDL
  31. def createBrightness(deltaLow: Double, deltaHigh: Double): Brightness

    Definition Classes
    PythonBigDL
  32. def createBytesToMat(byteKey: String): BytesToMat

    Definition Classes
    PythonBigDL
  33. def createCAdd(size: List[Int], bRegularizer: Regularizer[T] = null): CAdd[T]

    Definition Classes
    PythonBigDL
  34. def createCAddTable(inplace: Boolean = false): CAddTable[T, T]

    Definition Classes
    PythonBigDL
  35. def createCAveTable(inplace: Boolean = false): CAveTable[T]

    Definition Classes
    PythonBigDL
  36. def createCDivTable(): CDivTable[T]

    Definition Classes
    PythonBigDL
  37. def createCMaxTable(): CMaxTable[T]

    Definition Classes
    PythonBigDL
  38. def createCMinTable(): CMinTable[T]

    Definition Classes
    PythonBigDL
  39. def createCMul(size: List[Int], wRegularizer: Regularizer[T] = null): CMul[T]

    Definition Classes
    PythonBigDL
  40. def createCMulTable(): CMulTable[T]

    Definition Classes
    PythonBigDL
  41. def createCSubTable(): CSubTable[T]

    Definition Classes
    PythonBigDL
  42. def createCategoricalCrossEntropy(): CategoricalCrossEntropy[T]

    Definition Classes
    PythonBigDL
  43. def createCenterCrop(cropWidth: Int, cropHeight: Int, isClip: Boolean): CenterCrop

    Definition Classes
    PythonBigDL
  44. def createChannelNormalize(meanR: Double, meanG: Double, meanB: Double, stdR: Double = 1, stdG: Double = 1, stdB: Double = 1): FeatureTransformer

    Definition Classes
    PythonBigDL
  45. def createChannelOrder(): ChannelOrder

    Definition Classes
    PythonBigDL
  46. def createChannelScaledNormalizer(meanR: Int, meanG: Int, meanB: Int, scale: Double): ChannelScaledNormalizer

    Definition Classes
    PythonBigDL
  47. def createClamp(min: Int, max: Int): Clamp[T]

    Definition Classes
    PythonBigDL
  48. def createClassNLLCriterion(weights: JTensor = null, sizeAverage: Boolean = true, logProbAsInput: Boolean = true): ClassNLLCriterion[T]

    Definition Classes
    PythonBigDL
  49. def createClassSimplexCriterion(nClasses: Int): ClassSimplexCriterion[T]

    Definition Classes
    PythonBigDL
  50. def createColorJitter(brightnessProb: Double = 0.5, brightnessDelta: Double = 32, contrastProb: Double = 0.5, contrastLower: Double = 0.5, contrastUpper: Double = 1.5, hueProb: Double = 0.5, hueDelta: Double = 18, saturationProb: Double = 0.5, saturationLower: Double = 0.5, saturationUpper: Double = 1.5, randomOrderProb: Double = 0, shuffle: Boolean = false): ColorJitter

    Definition Classes
    PythonBigDL
  51. def createConcat(dimension: Int): Concat[T]

    Definition Classes
    PythonBigDL
  52. def createConcatTable(): ConcatTable[T]

    Definition Classes
    PythonBigDL
  53. def createConstInitMethod(value: Double): ConstInitMethod

    Definition Classes
    PythonBigDL
  54. def createContiguous(): Contiguous[T]

    Definition Classes
    PythonBigDL
  55. def createContrast(deltaLow: Double, deltaHigh: Double): Contrast

    Definition Classes
    PythonBigDL
  56. def createConvLSTMPeephole(inputSize: Int, outputSize: Int, kernelI: Int, kernelC: Int, stride: Int = 1, padding: Int = 1, activation: TensorModule[T] = null, innerActivation: TensorModule[T] = null, wRegularizer: Regularizer[T] = null, uRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, cRegularizer: Regularizer[T] = null, withPeephole: Boolean = true): ConvLSTMPeephole[T]

    Definition Classes
    PythonBigDL
  57. def createConvLSTMPeephole3D(inputSize: Int, outputSize: Int, kernelI: Int, kernelC: Int, stride: Int = 1, padding: Int = 1, wRegularizer: Regularizer[T] = null, uRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, cRegularizer: Regularizer[T] = null, withPeephole: Boolean = true): ConvLSTMPeephole3D[T]

    Definition Classes
    PythonBigDL
  58. def createCosine(inputSize: Int, outputSize: Int): Cosine[T]

    Definition Classes
    PythonBigDL
  59. def createCosineDistance(): CosineDistance[T]

    Definition Classes
    PythonBigDL
  60. def createCosineDistanceCriterion(sizeAverage: Boolean = true): CosineDistanceCriterion[T]

    Definition Classes
    PythonBigDL
  61. def createCosineEmbeddingCriterion(margin: Double = 0.0, sizeAverage: Boolean = true): CosineEmbeddingCriterion[T]

    Definition Classes
    PythonBigDL
  62. def createCosineProximityCriterion(): CosineProximityCriterion[T]

    Definition Classes
    PythonBigDL
  63. def createCropping2D(heightCrop: List[Int], widthCrop: List[Int], dataFormat: String = "NCHW"): Cropping2D[T]

    Definition Classes
    PythonBigDL
  64. def createCropping3D(dim1Crop: List[Int], dim2Crop: List[Int], dim3Crop: List[Int], dataFormat: String = Cropping3D.CHANNEL_FIRST): Cropping3D[T]

    Definition Classes
    PythonBigDL
  65. def createCrossEntropyCriterion(weights: JTensor = null, sizeAverage: Boolean = true): CrossEntropyCriterion[T]

    Definition Classes
    PythonBigDL
  66. def createCrossProduct(numTensor: Int = 0, embeddingSize: Int = 0): CrossProduct[T]

    Definition Classes
    PythonBigDL
  67. def createDLClassifier(model: Module[T], criterion: Criterion[T], featureSize: ArrayList[Int], labelSize: ArrayList[Int]): DLClassifier[T]

    Definition Classes
    PythonBigDL
  68. def createDLClassifierModel(model: Module[T], featureSize: ArrayList[Int]): DLClassifierModel[T]

    Definition Classes
    PythonBigDL
  69. def createDLEstimator(model: Module[T], criterion: Criterion[T], featureSize: ArrayList[Int], labelSize: ArrayList[Int]): DLEstimator[T]

    Definition Classes
    PythonBigDL
  70. def createDLImageTransformer(transformer: FeatureTransformer): DLImageTransformer

    Definition Classes
    PythonBigDL
  71. def createDLModel(model: Module[T], featureSize: ArrayList[Int]): DLModel[T]

    Definition Classes
    PythonBigDL
  72. def createDatasetFromImageFrame(imageFrame: ImageFrame): DataSet[ImageFeature]

    Definition Classes
    PythonBigDL
  73. def createDefault(): Default

    Definition Classes
    PythonBigDL
  74. def createDenseToSparse(): DenseToSparse[T]

    Definition Classes
    PythonBigDL
  75. def createDetectionCrop(roiKey: String, normalized: Boolean): DetectionCrop

    Definition Classes
    PythonBigDL
  76. def createDetectionOutputFrcnn(nmsThresh: Float = 0.3f, nClasses: Int, bboxVote: Boolean, maxPerImage: Int = 100, thresh: Double = 0.05): DetectionOutputFrcnn

    Definition Classes
    PythonBigDL
  77. def createDetectionOutputSSD(nClasses: Int, shareLocation: Boolean, bgLabel: Int, nmsThresh: Double, nmsTopk: Int, keepTopK: Int, confThresh: Double, varianceEncodedInTarget: Boolean, confPostProcess: Boolean): DetectionOutputSSD[T]

    Definition Classes
    PythonBigDL
  78. def createDiceCoefficientCriterion(sizeAverage: Boolean = true, epsilon: Float = 1.0f): DiceCoefficientCriterion[T]

    Definition Classes
    PythonBigDL
  79. def createDistKLDivCriterion(sizeAverage: Boolean = true): DistKLDivCriterion[T]

    Definition Classes
    PythonBigDL
  80. def createDistriOptimizer(model: AbstractModule[Activity, Activity, T], trainingRdd: JavaRDD[Sample], criterion: Criterion[T], optimMethod: Map[String, OptimMethod[T]], endTrigger: Trigger, batchSize: Int): Optimizer[T, MiniBatch[T]]

    Definition Classes
    PythonBigDL
  81. def createDistriOptimizerFromDataSet(model: AbstractModule[Activity, Activity, T], trainDataSet: DataSet[ImageFeature], criterion: Criterion[T], optimMethod: Map[String, OptimMethod[T]], endTrigger: Trigger, batchSize: Int): Optimizer[T, MiniBatch[T]]

    Definition Classes
    PythonBigDL
  82. def createDistributedImageFrame(imageRdd: JavaRDD[JTensor], labelRdd: JavaRDD[JTensor]): DistributedImageFrame

    Definition Classes
    PythonBigDL
  83. def createDotProduct(): DotProduct[T]

    Definition Classes
    PythonBigDL
  84. def createDotProductCriterion(sizeAverage: Boolean = false): DotProductCriterion[T]

    Definition Classes
    PythonBigDL
  85. def createDropout(initP: Double = 0.5, inplace: Boolean = false, scale: Boolean = true): Dropout[T]

    Definition Classes
    PythonBigDL
  86. def createELU(alpha: Double = 1.0, inplace: Boolean = false): ELU[T]

    Definition Classes
    PythonBigDL
  87. def createEcho(): Echo[T]

    Definition Classes
    PythonBigDL
  88. def createEuclidean(inputSize: Int, outputSize: Int, fastBackward: Boolean = true): Euclidean[T]

    Definition Classes
    PythonBigDL
  89. def createEveryEpoch(): Trigger

    Definition Classes
    PythonBigDL
  90. def createExp(): Exp[T]

    Definition Classes
    PythonBigDL
  91. def createExpand(meansR: Int = 123, meansG: Int = 117, meansB: Int = 104, minExpandRatio: Double = 1.0, maxExpandRatio: Double = 4.0): Expand

    Definition Classes
    PythonBigDL
  92. def createExpandSize(targetSizes: List[Int]): ExpandSize[T]

    Definition Classes
    PythonBigDL
  93. def createExponential(decayStep: Int, decayRate: Double, stairCase: Boolean = false): Exponential

    Definition Classes
    PythonBigDL
  94. def createFPN(in_channels_list: List[Int], out_channels: Int, top_blocks: Int = 0, in_channels_of_p6p7: Int = 0, out_channels_of_p6p7: Int = 0): FPN[T]

    Definition Classes
    PythonBigDL
  95. def createFeedForwardNetwork(hiddenSize: Int, filterSize: Int, reluDropout: Float): FeedForwardNetwork[T]

    Definition Classes
    PythonBigDL
  96. def createFiller(startX: Double, startY: Double, endX: Double, endY: Double, value: Int = 255): Filler

    Definition Classes
    PythonBigDL
  97. def createFixExpand(eh: Int, ew: Int): FixExpand

    Definition Classes
    PythonBigDL
  98. def createFixedCrop(wStart: Double, hStart: Double, wEnd: Double, hEnd: Double, normalized: Boolean, isClip: Boolean): FixedCrop

    Definition Classes
    PythonBigDL
  99. def createFlattenTable(): FlattenTable[T]

    Definition Classes
    PythonBigDL
  100. def createFtrl(learningRate: Double = 1e-3, learningRatePower: Double = 0.5, initialAccumulatorValue: Double = 0.1, l1RegularizationStrength: Double = 0.0, l2RegularizationStrength: Double = 0.0, l2ShrinkageRegularizationStrength: Double = 0.0): Ftrl[T]

    Definition Classes
    PythonBigDL
  101. def createGRU(inputSize: Int, outputSize: Int, p: Double = 0, activation: TensorModule[T] = null, innerActivation: TensorModule[T] = null, wRegularizer: Regularizer[T] = null, uRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): GRU[T]

    Definition Classes
    PythonBigDL
  102. def createGaussianCriterion(): GaussianCriterion[T]

    Definition Classes
    PythonBigDL
  103. def createGaussianDropout(rate: Double): GaussianDropout[T]

    Definition Classes
    PythonBigDL
  104. def createGaussianNoise(stddev: Double): GaussianNoise[T]

    Definition Classes
    PythonBigDL
  105. def createGaussianSampler(): GaussianSampler[T]

    Definition Classes
    PythonBigDL
  106. def createGradientReversal(lambda: Double = 1): GradientReversal[T]

    Definition Classes
    PythonBigDL
  107. def createHFlip(): HFlip

    Definition Classes
    PythonBigDL
  108. def createHardShrink(lambda: Double = 0.5): HardShrink[T]

    Definition Classes
    PythonBigDL
  109. def createHardSigmoid: HardSigmoid[T]

    Definition Classes
    PythonBigDL
  110. def createHardTanh(minValue: Double = 1, maxValue: Double = 1, inplace: Boolean = false): HardTanh[T]

    Definition Classes
    PythonBigDL
  111. def createHighway(size: Int, withBias: Boolean, activation: TensorModule[T] = null, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): Graph[T]

    Definition Classes
    PythonBigDL
  112. def createHingeEmbeddingCriterion(margin: Double = 1, sizeAverage: Boolean = true): HingeEmbeddingCriterion[T]

    Definition Classes
    PythonBigDL
  113. def createHitRatio(k: Int = 10, negNum: Int = 100): ValidationMethod[T]

    Definition Classes
    PythonBigDL
  114. def createHue(deltaLow: Double, deltaHigh: Double): Hue

    Definition Classes
    PythonBigDL
  115. def createIdentity(): Identity[T]

    Definition Classes
    PythonBigDL
  116. def createImageFeature(data: JTensor = null, label: JTensor = null, uri: String = null): ImageFeature

    Definition Classes
    PythonBigDL
  117. def createImageFrameToSample(inputKeys: List[String], targetKeys: List[String], sampleKey: String): ImageFrameToSample[T]

    Definition Classes
    PythonBigDL
  118. def createIndex(dimension: Int): Index[T]

    Definition Classes
    PythonBigDL
  119. def createInferReshape(size: List[Int], batchMode: Boolean = false): InferReshape[T]

    Definition Classes
    PythonBigDL
  120. def createInput(): ModuleNode[T]

    Definition Classes
    PythonBigDL
  121. def createJoinTable(dimension: Int, nInputDims: Int): JoinTable[T]

    Definition Classes
    PythonBigDL
  122. def createKLDCriterion(sizeAverage: Boolean): KLDCriterion[T]

    Definition Classes
    PythonBigDL
  123. def createKullbackLeiblerDivergenceCriterion: KullbackLeiblerDivergenceCriterion[T]

    Definition Classes
    PythonBigDL
  124. def createL1Cost(): L1Cost[T]

    Definition Classes
    PythonBigDL
  125. def createL1HingeEmbeddingCriterion(margin: Double = 1): L1HingeEmbeddingCriterion[T]

    Definition Classes
    PythonBigDL
  126. def createL1L2Regularizer(l1: Double, l2: Double): L1L2Regularizer[T]

    Definition Classes
    PythonBigDL
  127. def createL1Penalty(l1weight: Int, sizeAverage: Boolean = false, provideOutput: Boolean = true): L1Penalty[T]

    Definition Classes
    PythonBigDL
  128. def createL1Regularizer(l1: Double): L1Regularizer[T]

    Definition Classes
    PythonBigDL
  129. def createL2Regularizer(l2: Double): L2Regularizer[T]

    Definition Classes
    PythonBigDL
  130. def createLBFGS(maxIter: Int = 20, maxEval: Double = Double.MaxValue, tolFun: Double = 1e-5, tolX: Double = 1e-9, nCorrection: Int = 100, learningRate: Double = 1.0, verbose: Boolean = false, lineSearch: LineSearch[T] = null, lineSearchOptions: Map[Any, Any] = null): LBFGS[T]

    Definition Classes
    PythonBigDL
  131. def createLSTM(inputSize: Int, hiddenSize: Int, p: Double = 0, activation: TensorModule[T] = null, innerActivation: TensorModule[T] = null, wRegularizer: Regularizer[T] = null, uRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): LSTM[T]

    Definition Classes
    PythonBigDL
  132. def createLSTMPeephole(inputSize: Int, hiddenSize: Int, p: Double = 0, wRegularizer: Regularizer[T] = null, uRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): LSTMPeephole[T]

    Definition Classes
    PythonBigDL
  133. def createLayerNormalization(hiddenSize: Int): LayerNormalization[T]

    Definition Classes
    PythonBigDL
  134. def createLeakyReLU(negval: Double = 0.01, inplace: Boolean = false): LeakyReLU[T]

    Definition Classes
    PythonBigDL
  135. def createLinear(inputSize: Int, outputSize: Int, withBias: Boolean, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null): Linear[T]

    Definition Classes
    PythonBigDL
  136. def createLocalImageFrame(images: List[JTensor], labels: List[JTensor]): LocalImageFrame

    Definition Classes
    PythonBigDL
  137. def createLocalOptimizer(features: List[JTensor], y: JTensor, model: AbstractModule[Activity, Activity, T], criterion: Criterion[T], optimMethod: Map[String, OptimMethod[T]], endTrigger: Trigger, batchSize: Int, localCores: Int): Optimizer[T, MiniBatch[T]]

    Definition Classes
    PythonBigDL
  138. def createLocallyConnected1D(nInputFrame: Int, inputFrameSize: Int, outputFrameSize: Int, kernelW: Int, strideW: Int = 1, propagateBack: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null): LocallyConnected1D[T]

    Definition Classes
    PythonBigDL
  139. def createLocallyConnected2D(nInputPlane: Int, inputWidth: Int, inputHeight: Int, nOutputPlane: Int, kernelW: Int, kernelH: Int, strideW: Int = 1, strideH: Int = 1, padW: Int = 0, padH: Int = 0, propagateBack: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null, withBias: Boolean = true, dataFormat: String = "NCHW"): LocallyConnected2D[T]

    Definition Classes
    PythonBigDL
  140. def createLog(): Log[T]

    Definition Classes
    PythonBigDL
  141. def createLogSigmoid(): LogSigmoid[T]

    Definition Classes
    PythonBigDL
  142. def createLogSoftMax(): LogSoftMax[T]

    Definition Classes
    PythonBigDL
  143. def createLookupTable(nIndex: Int, nOutput: Int, paddingValue: Double = 0, maxNorm: Double = Double.MaxValue, normType: Double = 2.0, shouldScaleGradByFreq: Boolean = false, wRegularizer: Regularizer[T] = null): LookupTable[T]

    Definition Classes
    PythonBigDL
  144. def createLookupTableSparse(nIndex: Int, nOutput: Int, combiner: String = "sum", maxNorm: Double = 1, wRegularizer: Regularizer[T] = null): LookupTableSparse[T]

    Definition Classes
    PythonBigDL
  145. def createLoss(criterion: Criterion[T]): ValidationMethod[T]

    Definition Classes
    PythonBigDL
  146. def createMAE(): ValidationMethod[T]

    Definition Classes
    PythonBigDL
  147. def createMM(transA: Boolean = false, transB: Boolean = false): MM[T]

    Definition Classes
    PythonBigDL
  148. def createMSECriterion: MSECriterion[T]

    Definition Classes
    PythonBigDL
  149. def createMV(trans: Boolean = false): MV[T]

    Definition Classes
    PythonBigDL
  150. def createMapTable(module: AbstractModule[Activity, Activity, T] = null): MapTable[T]

    Definition Classes
    PythonBigDL
  151. def createMarginCriterion(margin: Double = 1.0, sizeAverage: Boolean = true, squared: Boolean = false): MarginCriterion[T]

    Definition Classes
    PythonBigDL
  152. def createMarginRankingCriterion(margin: Double = 1.0, sizeAverage: Boolean = true): MarginRankingCriterion[T]

    Definition Classes
    PythonBigDL
  153. def createMaskedSelect(): MaskedSelect[T]

    Definition Classes
    PythonBigDL
  154. def createMasking(maskValue: Double): Masking[T]

    Definition Classes
    PythonBigDL
  155. def createMatToFloats(validHeight: Int = 300, validWidth: Int = 300, validChannels: Int = 3, outKey: String = ImageFeature.floats, shareBuffer: Boolean = true): MatToFloats

    Definition Classes
    PythonBigDL
  156. def createMatToTensor(toRGB: Boolean = false, tensorKey: String = ImageFeature.imageTensor): MatToTensor[T]

    Definition Classes
    PythonBigDL
  157. def createMax(dim: Int = 1, numInputDims: Int = Int.MinValue): Max[T]

    Definition Classes
    PythonBigDL
  158. def createMaxEpoch(max: Int): Trigger

    Definition Classes
    PythonBigDL
  159. def createMaxIteration(max: Int): Trigger

    Definition Classes
    PythonBigDL
  160. def createMaxScore(max: Float): Trigger

    Definition Classes
    PythonBigDL
  161. def createMaxout(inputSize: Int, outputSize: Int, maxoutNumber: Int, withBias: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: Tensor[T] = null, initBias: Tensor[T] = null): Maxout[T]

    Definition Classes
    PythonBigDL
  162. def createMean(dimension: Int = 1, nInputDims: Int = 1, squeeze: Boolean = true): Mean[T]

    Definition Classes
    PythonBigDL
  163. def createMeanAbsolutePercentageCriterion: MeanAbsolutePercentageCriterion[T]

    Definition Classes
    PythonBigDL
  164. def createMeanAveragePrecision(k: Int, classes: Int): ValidationMethod[T]

    Definition Classes
    PythonBigDL
  165. def createMeanAveragePrecisionObjectDetection(classes: Int, iou: Float, useVoc2007: Boolean, skipClass: Int): ValidationMethod[T]

    Definition Classes
    PythonBigDL
  166. def createMeanSquaredLogarithmicCriterion: MeanSquaredLogarithmicCriterion[T]

    Definition Classes
    PythonBigDL
  167. def createMin(dim: Int = 1, numInputDims: Int = Int.MinValue): Min[T]

    Definition Classes
    PythonBigDL
  168. def createMinLoss(min: Float): Trigger

    Definition Classes
    PythonBigDL
  169. def createMixtureTable(dim: Int = Int.MaxValue): MixtureTable[T]

    Definition Classes
    PythonBigDL
  170. def createModel(input: List[ModuleNode[T]], output: List[ModuleNode[T]]): Graph[T]

    Definition Classes
    PythonBigDL
  171. def createModelPreprocessor(preprocessor: AbstractModule[Activity, Activity, T], trainable: AbstractModule[Activity, Activity, T]): Graph[T]

    Definition Classes
    PythonBigDL
  172. def createMsraFiller(varianceNormAverage: Boolean = true): MsraFiller

    Definition Classes
    PythonBigDL
  173. def createMul(): Mul[T]

    Definition Classes
    PythonBigDL
  174. def createMulConstant(scalar: Double, inplace: Boolean = false): MulConstant[T]

    Definition Classes
    PythonBigDL
  175. def createMultiCriterion(): MultiCriterion[T]

    Definition Classes
    PythonBigDL
  176. def createMultiLabelMarginCriterion(sizeAverage: Boolean = true): MultiLabelMarginCriterion[T]

    Definition Classes
    PythonBigDL
  177. def createMultiLabelSoftMarginCriterion(weights: JTensor = null, sizeAverage: Boolean = true): MultiLabelSoftMarginCriterion[T]

    Definition Classes
    PythonBigDL
  178. def createMultiMarginCriterion(p: Int = 1, weights: JTensor = null, margin: Double = 1.0, sizeAverage: Boolean = true): MultiMarginCriterion[T]

    Definition Classes
    PythonBigDL
  179. def createMultiRNNCell(cells: List[Cell[T]]): MultiRNNCell[T]

    Definition Classes
    PythonBigDL
  180. def createMultiStep(stepSizes: List[Int], gamma: Double): MultiStep

    Definition Classes
    PythonBigDL
  181. def createNDCG(k: Int = 10, negNum: Int = 100): ValidationMethod[T]

    Definition Classes
    PythonBigDL
  182. def createNarrow(dimension: Int, offset: Int, length: Int = 1): Narrow[T]

    Definition Classes
    PythonBigDL
  183. def createNarrowTable(offset: Int, length: Int = 1): NarrowTable[T]

    Definition Classes
    PythonBigDL
  184. def createNegative(inplace: Boolean): Negative[T]

    Definition Classes
    PythonBigDL
  185. def createNegativeEntropyPenalty(beta: Double): NegativeEntropyPenalty[T]

    Definition Classes
    PythonBigDL
  186. def createNode(module: AbstractModule[Activity, Activity, T], x: List[ModuleNode[T]]): ModuleNode[T]

    Definition Classes
    PythonBigDL
  187. def createNormalize(p: Double, eps: Double = 1e-10): Normalize[T]

    Definition Classes
    PythonBigDL
  188. def createNormalizeScale(p: Double, eps: Double = 1e-10, scale: Double, size: List[Int], wRegularizer: Regularizer[T] = null): NormalizeScale[T]

    Definition Classes
    PythonBigDL
  189. def createOnes(): Ones.type

    Definition Classes
    PythonBigDL
  190. def createPGCriterion(sizeAverage: Boolean = false): PGCriterion[T]

    Definition Classes
    PythonBigDL
  191. def createPReLU(nOutputPlane: Int = 0): PReLU[T]

    Definition Classes
    PythonBigDL
  192. def createPack(dimension: Int): Pack[T]

    Definition Classes
    PythonBigDL
  193. def createPadding(dim: Int, pad: Int, nInputDim: Int, value: Double = 0.0, nIndex: Int = 1): Padding[T]

    Definition Classes
    PythonBigDL
  194. def createPairwiseDistance(norm: Int = 2): PairwiseDistance[T]

    Definition Classes
    PythonBigDL
  195. def createParallelAdam(learningRate: Double = 1e-3, learningRateDecay: Double = 0.0, beta1: Double = 0.9, beta2: Double = 0.999, Epsilon: Double = 1e-8, parallelNum: Int = Engine.coreNumber()): ParallelAdam[T]

    Definition Classes
    PythonBigDL
  196. def createParallelCriterion(repeatTarget: Boolean = false): ParallelCriterion[T]

    Definition Classes
    PythonBigDL
  197. def createParallelTable(): ParallelTable[T]

    Definition Classes
    PythonBigDL
  198. def createPipeline(list: List[FeatureTransformer]): FeatureTransformer

    Definition Classes
    PythonBigDL
  199. def createPixelBytesToMat(byteKey: String): PixelBytesToMat

    Definition Classes
    PythonBigDL
  200. def createPixelNormalize(means: List[Double]): PixelNormalizer

    Definition Classes
    PythonBigDL
  201. def createPlateau(monitor: String, factor: Float = 0.1f, patience: Int = 10, mode: String = "min", epsilon: Float = 1e-4f, cooldown: Int = 0, minLr: Float = 0): Plateau

    Definition Classes
    PythonBigDL
  202. def createPoissonCriterion: PoissonCriterion[T]

    Definition Classes
    PythonBigDL
  203. def createPoly(power: Double, maxIteration: Int): Poly

    Definition Classes
    PythonBigDL
  204. def createPooler(resolution: Int, scales: List[Double], sampling_ratio: Int): Pooler[T]

    Definition Classes
    PythonBigDL
  205. def createPower(power: Double, scale: Double = 1, shift: Double = 0): Power[T]

    Definition Classes
    PythonBigDL
  206. def createPriorBox(minSizes: List[Double], maxSizes: List[Double] = null, aspectRatios: List[Double] = null, isFlip: Boolean = true, isClip: Boolean = false, variances: List[Double] = null, offset: Float = 0.5f, imgH: Int = 0, imgW: Int = 0, imgSize: Int = 0, stepH: Float = 0, stepW: Float = 0, step: Float = 0): PriorBox[T]

    Definition Classes
    PythonBigDL
  207. def createProposal(preNmsTopN: Int, postNmsTopN: Int, ratios: List[Double], scales: List[Double], rpnPreNmsTopNTrain: Int = 12000, rpnPostNmsTopNTrain: Int = 2000): Proposal

    Definition Classes
    PythonBigDL
  208. def createRMSprop(learningRate: Double = 1e-2, learningRateDecay: Double = 0.0, decayRate: Double = 0.99, Epsilon: Double = 1e-8): RMSprop[T]

    Definition Classes
    PythonBigDL
  209. def createRReLU(lower: Double = 1.0 / 8, upper: Double = 1.0 / 3, inplace: Boolean = false): RReLU[T]

    Definition Classes
    PythonBigDL
  210. def createRandomAlterAspect(min_area_ratio: Float, max_area_ratio: Int, min_aspect_ratio_change: Float, interp_mode: String, cropLength: Int): RandomAlterAspect

    Definition Classes
    PythonBigDL
  211. def createRandomAspectScale(scales: List[Int], scaleMultipleOf: Int = 1, maxSize: Int = 1000): RandomAspectScale

    Definition Classes
    PythonBigDL
  212. def createRandomCrop(cropWidth: Int, cropHeight: Int, isClip: Boolean): RandomCrop

    Definition Classes
    PythonBigDL
  213. def createRandomCropper(cropWidth: Int, cropHeight: Int, mirror: Boolean, cropperMethod: String, channels: Int): RandomCropper

    Definition Classes
    PythonBigDL
  214. def createRandomNormal(mean: Double, stdv: Double): RandomNormal

    Definition Classes
    PythonBigDL
  215. def createRandomResize(minSize: Int, maxSize: Int): RandomResize

    Definition Classes
    PythonBigDL
  216. def createRandomSampler(): FeatureTransformer

    Definition Classes
    PythonBigDL
  217. def createRandomTransformer(transformer: FeatureTransformer, prob: Double): RandomTransformer

    Definition Classes
    PythonBigDL
  218. def createRandomUniform(): InitializationMethod

    Definition Classes
    PythonBigDL
  219. def createRandomUniform(lower: Double, upper: Double): InitializationMethod

    Definition Classes
    PythonBigDL
  220. def createReLU(ip: Boolean = false): ReLU[T]

    Definition Classes
    PythonBigDL
  221. def createReLU6(inplace: Boolean = false): ReLU6[T]

    Definition Classes
    PythonBigDL
  222. def createRecurrent(): Recurrent[T]

    Definition Classes
    PythonBigDL
  223. def createRecurrentDecoder(outputLength: Int): RecurrentDecoder[T]

    Definition Classes
    PythonBigDL
  224. def createReplicate(nFeatures: Int, dim: Int = 1, nDim: Int = Int.MaxValue): Replicate[T]

    Definition Classes
    PythonBigDL
  225. def createReshape(size: List[Int], batchMode: Boolean = null): Reshape[T]

    Definition Classes
    PythonBigDL
  226. def createResize(resizeH: Int, resizeW: Int, resizeMode: Int = Imgproc.INTER_LINEAR, useScaleFactor: Boolean): Resize

    Definition Classes
    PythonBigDL
  227. def createResizeBilinear(outputHeight: Int, outputWidth: Int, alignCorner: Boolean, dataFormat: String): ResizeBilinear[T]

    Definition Classes
    PythonBigDL
  228. def createReverse(dimension: Int = 1, isInplace: Boolean = false): Reverse[T]

    Definition Classes
    PythonBigDL
  229. def createRnnCell(inputSize: Int, hiddenSize: Int, activation: TensorModule[T], isInputWithBias: Boolean = true, isHiddenWithBias: Boolean = true, wRegularizer: Regularizer[T] = null, uRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): RnnCell[T]

    Definition Classes
    PythonBigDL
  230. def createRoiAlign(spatial_scale: Double, sampling_ratio: Int, pooled_h: Int, pooled_w: Int): RoiAlign[T]

    Definition Classes
    PythonBigDL
  231. def createRoiHFlip(normalized: Boolean = true): RoiHFlip

    Definition Classes
    PythonBigDL
  232. def createRoiNormalize(): RoiNormalize

    Definition Classes
    PythonBigDL
  233. def createRoiPooling(pooled_w: Int, pooled_h: Int, spatial_scale: Double): RoiPooling[T]

    Definition Classes
    PythonBigDL
  234. def createRoiProject(needMeetCenterConstraint: Boolean): RoiProject

    Definition Classes
    PythonBigDL
  235. def createRoiResize(normalized: Boolean): RoiResize

    Definition Classes
    PythonBigDL
  236. def createSGD(learningRate: Double = 1e-3, learningRateDecay: Double = 0.0, weightDecay: Double = 0.0, momentum: Double = 0.0, dampening: Double = Double.MaxValue, nesterov: Boolean = false, leaningRateSchedule: LearningRateSchedule = SGD.Default(), learningRates: JTensor = null, weightDecays: JTensor = null): SGD[T]

    Definition Classes
    PythonBigDL
  237. def createSReLU(shape: ArrayList[Int], shareAxes: ArrayList[Int] = null): SReLU[T]

    Definition Classes
    PythonBigDL
  238. def createSaturation(deltaLow: Double, deltaHigh: Double): Saturation

    Definition Classes
    PythonBigDL
  239. def createScale(size: List[Int]): Scale[T]

    Definition Classes
    PythonBigDL
  240. def createSelect(dimension: Int, index: Int): Select[T]

    Definition Classes
    PythonBigDL
  241. def createSelectTable(dimension: Int): SelectTable[T]

    Definition Classes
    PythonBigDL
  242. def createSequenceBeamSearch(vocabSize: Int, beamSize: Int, alpha: Float, decodeLength: Int, eosId: Float, paddingValue: Float, numHiddenLayers: Int, hiddenSize: Int): SequenceBeamSearch[T]

    Definition Classes
    PythonBigDL
  243. def createSequential(): Container[Activity, Activity, T]

    Definition Classes
    PythonBigDL
  244. def createSequentialSchedule(iterationPerEpoch: Int): SequentialSchedule

    Definition Classes
    PythonBigDL
  245. def createSeveralIteration(interval: Int): Trigger

    Definition Classes
    PythonBigDL
  246. def createSigmoid(): Sigmoid[T]

    Definition Classes
    PythonBigDL
  247. def createSmoothL1Criterion(sizeAverage: Boolean = true): SmoothL1Criterion[T]

    Definition Classes
    PythonBigDL
  248. def createSmoothL1CriterionWithWeights(sigma: Double, num: Int = 0): SmoothL1CriterionWithWeights[T]

    Definition Classes
    PythonBigDL
  249. def createSoftMarginCriterion(sizeAverage: Boolean = true): SoftMarginCriterion[T]

    Definition Classes
    PythonBigDL
  250. def createSoftMax(pos: Int = 1): SoftMax[T]

    Definition Classes
    PythonBigDL
  251. def createSoftMin(): SoftMin[T]

    Definition Classes
    PythonBigDL
  252. def createSoftPlus(beta: Double = 1.0): SoftPlus[T]

    Definition Classes
    PythonBigDL
  253. def createSoftShrink(lambda: Double = 0.5): SoftShrink[T]

    Definition Classes
    PythonBigDL
  254. def createSoftSign(): SoftSign[T]

    Definition Classes
    PythonBigDL
  255. def createSoftmaxWithCriterion(ignoreLabel: Integer = null, normalizeMode: String = "VALID"): SoftmaxWithCriterion[T]

    Definition Classes
    PythonBigDL
  256. def createSparseJoinTable(dimension: Int): SparseJoinTable[T]

    Definition Classes
    PythonBigDL
  257. def createSparseLinear(inputSize: Int, outputSize: Int, withBias: Boolean, backwardStart: Int = 1, backwardLength: Int = 1, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null): SparseLinear[T]

    Definition Classes
    PythonBigDL
  258. def createSpatialAveragePooling(kW: Int, kH: Int, dW: Int = 1, dH: Int = 1, padW: Int = 0, padH: Int = 0, globalPooling: Boolean = false, ceilMode: Boolean = false, countIncludePad: Boolean = true, divide: Boolean = true, format: String = "NCHW"): SpatialAveragePooling[T]

    Definition Classes
    PythonBigDL
  259. def createSpatialBatchNormalization(nOutput: Int, eps: Double = 1e-5, momentum: Double = 0.1, affine: Boolean = true, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null, dataFormat: String = "NCHW"): SpatialBatchNormalization[T]

    Definition Classes
    PythonBigDL
  260. def createSpatialContrastiveNormalization(nInputPlane: Int = 1, kernel: JTensor = null, threshold: Double = 1e-4, thresval: Double = 1e-4): SpatialContrastiveNormalization[T]

    Definition Classes
    PythonBigDL
  261. def createSpatialConvolution(nInputPlane: Int, nOutputPlane: Int, kernelW: Int, kernelH: Int, strideW: Int = 1, strideH: Int = 1, padW: Int = 0, padH: Int = 0, nGroup: Int = 1, propagateBack: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null, withBias: Boolean = true, dataFormat: String = "NCHW"): SpatialConvolution[T]

    Definition Classes
    PythonBigDL
  262. def createSpatialConvolutionMap(connTable: JTensor, kW: Int, kH: Int, dW: Int = 1, dH: Int = 1, padW: Int = 0, padH: Int = 0, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): SpatialConvolutionMap[T]

    Definition Classes
    PythonBigDL
  263. def createSpatialCrossMapLRN(size: Int = 5, alpha: Double = 1.0, beta: Double = 0.75, k: Double = 1.0, dataFormat: String = "NCHW"): SpatialCrossMapLRN[T]

    Definition Classes
    PythonBigDL
  264. def createSpatialDilatedConvolution(nInputPlane: Int, nOutputPlane: Int, kW: Int, kH: Int, dW: Int = 1, dH: Int = 1, padW: Int = 0, padH: Int = 0, dilationW: Int = 1, dilationH: Int = 1, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): SpatialDilatedConvolution[T]

    Definition Classes
    PythonBigDL
  265. def createSpatialDivisiveNormalization(nInputPlane: Int = 1, kernel: JTensor = null, threshold: Double = 1e-4, thresval: Double = 1e-4): SpatialDivisiveNormalization[T]

    Definition Classes
    PythonBigDL
  266. def createSpatialDropout1D(initP: Double = 0.5): SpatialDropout1D[T]

    Definition Classes
    PythonBigDL
  267. def createSpatialDropout2D(initP: Double = 0.5, dataFormat: String = "NCHW"): SpatialDropout2D[T]

    Definition Classes
    PythonBigDL
  268. def createSpatialDropout3D(initP: Double = 0.5, dataFormat: String = "NCHW"): SpatialDropout3D[T]

    Definition Classes
    PythonBigDL
  269. def createSpatialFullConvolution(nInputPlane: Int, nOutputPlane: Int, kW: Int, kH: Int, dW: Int = 1, dH: Int = 1, padW: Int = 0, padH: Int = 0, adjW: Int = 0, adjH: Int = 0, nGroup: Int = 1, noBias: Boolean = false, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): SpatialFullConvolution[T]

    Definition Classes
    PythonBigDL
  270. def createSpatialMaxPooling(kW: Int, kH: Int, dW: Int, dH: Int, padW: Int = 0, padH: Int = 0, ceilMode: Boolean = false, format: String = "NCHW"): SpatialMaxPooling[T]

    Definition Classes
    PythonBigDL
  271. def createSpatialSeparableConvolution(nInputChannel: Int, nOutputChannel: Int, depthMultiplier: Int, kW: Int, kH: Int, sW: Int = 1, sH: Int = 1, pW: Int = 0, pH: Int = 0, withBias: Boolean = true, dataFormat: String = "NCHW", wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, pRegularizer: Regularizer[T] = null): SpatialSeparableConvolution[T]

    Definition Classes
    PythonBigDL
  272. def createSpatialShareConvolution(nInputPlane: Int, nOutputPlane: Int, kernelW: Int, kernelH: Int, strideW: Int = 1, strideH: Int = 1, padW: Int = 0, padH: Int = 0, nGroup: Int = 1, propagateBack: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null, withBias: Boolean = true): SpatialShareConvolution[T]

    Definition Classes
    PythonBigDL
  273. def createSpatialSubtractiveNormalization(nInputPlane: Int = 1, kernel: JTensor = null): SpatialSubtractiveNormalization[T]

    Definition Classes
    PythonBigDL
  274. def createSpatialWithinChannelLRN(size: Int = 5, alpha: Double = 1.0, beta: Double = 0.75): SpatialWithinChannelLRN[T]

    Definition Classes
    PythonBigDL
  275. def createSpatialZeroPadding(padLeft: Int, padRight: Int, padTop: Int, padBottom: Int): SpatialZeroPadding[T]

    Definition Classes
    PythonBigDL
  276. def createSplitTable(dimension: Int, nInputDims: Int = 1): SplitTable[T]

    Definition Classes
    PythonBigDL
  277. def createSqrt(): Sqrt[T]

    Definition Classes
    PythonBigDL
  278. def createSquare(): Square[T]

    Definition Classes
    PythonBigDL
  279. def createSqueeze(dim: Int = Int.MinValue, numInputDims: Int = Int.MinValue): Squeeze[T]

    Definition Classes
    PythonBigDL
  280. def createStep(stepSize: Int, gamma: Double): Step

    Definition Classes
    PythonBigDL
  281. def createSum(dimension: Int = 1, nInputDims: Int = 1, sizeAverage: Boolean = false, squeeze: Boolean = true): Sum[T]

    Definition Classes
    PythonBigDL
  282. def createTableOperation(operationLayer: AbstractModule[Table, Tensor[T], T]): TableOperation[T]

    Definition Classes
    PythonBigDL
  283. def createTanh(): Tanh[T]

    Definition Classes
    PythonBigDL
  284. def createTanhShrink(): TanhShrink[T]

    Definition Classes
    PythonBigDL
  285. def createTemporalConvolution(inputFrameSize: Int, outputFrameSize: Int, kernelW: Int, strideW: Int = 1, propagateBack: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null): TemporalConvolution[T]

    Definition Classes
    PythonBigDL
  286. def createTemporalMaxPooling(kW: Int, dW: Int): TemporalMaxPooling[T]

    Definition Classes
    PythonBigDL
  287. def createThreshold(th: Double = 1e-6, v: Double = 0.0, ip: Boolean = false): Threshold[T]

    Definition Classes
    PythonBigDL
  288. def createTile(dim: Int, copies: Int): Tile[T]

    Definition Classes
    PythonBigDL
  289. def createTimeDistributed(layer: TensorModule[T]): TimeDistributed[T]

    Definition Classes
    PythonBigDL
  290. def createTimeDistributedCriterion(critrn: TensorCriterion[T], sizeAverage: Boolean = false, dimension: Int = 2): TimeDistributedCriterion[T]

    Definition Classes
    PythonBigDL
  291. def createTimeDistributedMaskCriterion(critrn: TensorCriterion[T], paddingValue: Int = 0): TimeDistributedMaskCriterion[T]

    Definition Classes
    PythonBigDL
  292. def createTop1Accuracy(): ValidationMethod[T]

    Definition Classes
    PythonBigDL
  293. def createTop5Accuracy(): ValidationMethod[T]

    Definition Classes
    PythonBigDL
  294. def createTrainSummary(logDir: String, appName: String): TrainSummary

    Definition Classes
    PythonBigDL
  295. def createTransformer(vocabSize: Int, hiddenSize: Int, numHeads: Int, filterSize: Int, numHiddenlayers: Int, postprocessDropout: Double, attentionDropout: Double, reluDropout: Double): Transformer[T]

    Definition Classes
    PythonBigDL
  296. def createTransformerCriterion(criterion: AbstractCriterion[Activity, Activity, T], inputTransformer: AbstractModule[Activity, Activity, T] = null, targetTransformer: AbstractModule[Activity, Activity, T] = null): TransformerCriterion[T]

    Definition Classes
    PythonBigDL
  297. def createTranspose(permutations: List[List[Int]]): Transpose[T]

    Definition Classes
    PythonBigDL
  298. def createTreeNNAccuracy(): ValidationMethod[T]

    Definition Classes
    PythonBigDL
  299. def createTriggerAnd(first: Trigger, others: List[Trigger]): Trigger

    Definition Classes
    PythonBigDL
  300. def createTriggerOr(first: Trigger, others: List[Trigger]): Trigger

    Definition Classes
    PythonBigDL
  301. def createUnsqueeze(pos: List[Int], numInputDims: Int = Int.MinValue): Unsqueeze[T]

    Definition Classes
    PythonBigDL
  302. def createUpSampling1D(length: Int): UpSampling1D[T]

    Definition Classes
    PythonBigDL
  303. def createUpSampling2D(size: List[Int], dataFormat: String): UpSampling2D[T]

    Definition Classes
    PythonBigDL
  304. def createUpSampling3D(size: List[Int]): UpSampling3D[T]

    Definition Classes
    PythonBigDL
  305. def createValidationSummary(logDir: String, appName: String): ValidationSummary

    Definition Classes
    PythonBigDL
  306. def createView(sizes: List[Int], num_input_dims: Int = 0): View[T]

    Definition Classes
    PythonBigDL
  307. def createVolumetricAveragePooling(kT: Int, kW: Int, kH: Int, dT: Int, dW: Int, dH: Int, padT: Int = 0, padW: Int = 0, padH: Int = 0, countIncludePad: Boolean = true, ceilMode: Boolean = false): VolumetricAveragePooling[T]

    Definition Classes
    PythonBigDL
  308. def createVolumetricConvolution(nInputPlane: Int, nOutputPlane: Int, kT: Int, kW: Int, kH: Int, dT: Int = 1, dW: Int = 1, dH: Int = 1, padT: Int = 0, padW: Int = 0, padH: Int = 0, withBias: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): VolumetricConvolution[T]

    Definition Classes
    PythonBigDL
  309. def createVolumetricFullConvolution(nInputPlane: Int, nOutputPlane: Int, kT: Int, kW: Int, kH: Int, dT: Int = 1, dW: Int = 1, dH: Int = 1, padT: Int = 0, padW: Int = 0, padH: Int = 0, adjT: Int = 0, adjW: Int = 0, adjH: Int = 0, nGroup: Int = 1, noBias: Boolean = false, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): VolumetricFullConvolution[T]

    Definition Classes
    PythonBigDL
  310. def createVolumetricMaxPooling(kT: Int, kW: Int, kH: Int, dT: Int, dW: Int, dH: Int, padT: Int = 0, padW: Int = 0, padH: Int = 0): VolumetricMaxPooling[T]

    Definition Classes
    PythonBigDL
  311. def createWarmup(delta: Double): Warmup

    Definition Classes
    PythonBigDL
  312. def createXavier(): Xavier.type

    Definition Classes
    PythonBigDL
  313. def createZeros(): Zeros.type

    Definition Classes
    PythonBigDL
  314. def criterionBackward(criterion: AbstractCriterion[Activity, Activity, T], input: List[_ <: AnyRef], inputIsTable: Boolean, target: List[_ <: AnyRef], targetIsTable: Boolean): List[JTensor]

    Definition Classes
    PythonBigDL
  315. def criterionForward(criterion: AbstractCriterion[Activity, Activity, T], input: List[_ <: AnyRef], inputIsTable: Boolean, target: List[_ <: AnyRef], targetIsTable: Boolean): T

    Definition Classes
    PythonBigDL
  316. def disableClip(optimizer: Optimizer[T, MiniBatch[T]]): Unit

    Definition Classes
    PythonBigDL
  317. def distributedImageFrameRandomSplit(imageFrame: DistributedImageFrame, weights: List[Double]): Array[ImageFrame]

    Definition Classes
    PythonBigDL
  318. def distributedImageFrameToImageTensorRdd(imageFrame: DistributedImageFrame, floatKey: String = ImageFeature.floats, toChw: Boolean = true): JavaRDD[JTensor]

    Definition Classes
    PythonBigDL
  319. def distributedImageFrameToLabelTensorRdd(imageFrame: DistributedImageFrame): JavaRDD[JTensor]

    Definition Classes
    PythonBigDL
  320. def distributedImageFrameToPredict(imageFrame: DistributedImageFrame, key: String): JavaRDD[List[Any]]

    Definition Classes
    PythonBigDL
  321. def distributedImageFrameToSample(imageFrame: DistributedImageFrame, key: String): JavaRDD[Sample]

    Definition Classes
    PythonBigDL
  322. def distributedImageFrameToUri(imageFrame: DistributedImageFrame, key: String): JavaRDD[String]

    Definition Classes
    PythonBigDL
  323. def dlClassifierModelTransform(dlClassifierModel: DLClassifierModel[T], dataSet: DataFrame): DataFrame

    Definition Classes
    PythonBigDL
  324. def dlImageTransform(dlImageTransformer: DLImageTransformer, dataSet: DataFrame): DataFrame

    Definition Classes
    PythonBigDL
  325. def dlModelTransform(dlModel: DLModel[T], dataSet: DataFrame): DataFrame

    Definition Classes
    PythonBigDL
  326. def dlReadImage(path: String, sc: JavaSparkContext, minParitions: Int): DataFrame

    Definition Classes
    PythonBigDL
  327. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  328. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  329. def evaluate(module: AbstractModule[Activity, Activity, T]): AbstractModule[Activity, Activity, T]

    Definition Classes
    PythonBigDL
  330. def featureTransformDataset(dataset: DataSet[ImageFeature], transformer: FeatureTransformer): DataSet[ImageFeature]

    Definition Classes
    PythonBigDL
  331. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  332. def findGraphNode(model: Graph[T], name: String): ModuleNode[T]

    Definition Classes
    PythonBigDL
  333. def fitClassifier(classifier: DLClassifier[T], dataSet: DataFrame): DLModel[T]

    Definition Classes
    PythonBigDL
  334. def fitEstimator(estimator: DLEstimator[T], dataSet: DataFrame): DLModel[T]

    Definition Classes
    PythonBigDL
  335. def freeze(model: AbstractModule[Activity, Activity, T], freezeLayers: List[String]): AbstractModule[Activity, Activity, T]

    Definition Classes
    PythonBigDL
  336. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  337. def getContainerModules(module: Container[Activity, Activity, T]): List[AbstractModule[Activity, Activity, T]]

    Definition Classes
    PythonBigDL
  338. def getEngineType(): String

    Definition Classes
    PythonBigDL
  339. def getFlattenModules(module: Container[Activity, Activity, T], includeContainer: Boolean): List[AbstractModule[Activity, Activity, T]]

    Definition Classes
    PythonBigDL
  340. def getHiddenState(rec: Recurrent[T]): JActivity

    Definition Classes
    PythonBigDL
  341. def getNodeAndCoreNumber(): Array[Int]

    Definition Classes
    PythonBigDL
  342. def getOptimizerVersion(): String

    Definition Classes
    PythonBigDL
  343. def getRealClassNameOfJValue(module: AbstractModule[Activity, Activity, T]): String

    Definition Classes
    PythonBigDL
  344. def getRunningMean(module: BatchNormalization[T]): JTensor

    Definition Classes
    PythonBigDL
  345. def getRunningStd(module: BatchNormalization[T]): JTensor

    Definition Classes
    PythonBigDL
  346. def getWeights(model: AbstractModule[Activity, Activity, T]): List[JTensor]

    Definition Classes
    PythonBigDL
  347. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  348. def imageFeatureGetKeys(imageFeature: ImageFeature): List[String]

    Definition Classes
    PythonBigDL
  349. def imageFeatureToImageTensor(imageFeature: ImageFeature, floatKey: String = ImageFeature.floats, toChw: Boolean = true): JTensor

    Definition Classes
    PythonBigDL
  350. def imageFeatureToLabelTensor(imageFeature: ImageFeature): JTensor

    Definition Classes
    PythonBigDL
  351. def initEngine(): Unit

    Definition Classes
    PythonBigDL
  352. def isDistributed(imageFrame: ImageFrame): Boolean

    Definition Classes
    PythonBigDL
  353. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  354. def isLocal(imageFrame: ImageFrame): Boolean

    Definition Classes
    PythonBigDL
  355. def isWithWeights(module: Module[T]): Boolean

    Definition Classes
    PythonBigDL
  356. def jTensorsToActivity(input: List[_ <: AnyRef], isTable: Boolean): Activity

    Definition Classes
    PythonBigDL
  357. def loadBigDL(path: String): AbstractModule[Activity, Activity, T]

    Definition Classes
    PythonBigDL
  358. def loadBigDLModule(modulePath: String, weightPath: String): AbstractModule[Activity, Activity, T]

    Definition Classes
    PythonBigDL
  359. def loadCaffe(model: AbstractModule[Activity, Activity, T], defPath: String, modelPath: String, matchAll: Boolean = true): AbstractModule[Activity, Activity, T]

    Definition Classes
    PythonBigDL
  360. def loadCaffeModel(defPath: String, modelPath: String): AbstractModule[Activity, Activity, T]

    Definition Classes
    PythonBigDL
  361. def loadOptimMethod(path: String): OptimMethod[T]

    Definition Classes
    PythonBigDL
  362. def loadTF(path: String, inputs: List[String], outputs: List[String], byteOrder: String, binFile: String = null, generatedBackward: Boolean = true): AbstractModule[Activity, Activity, T]

    Definition Classes
    PythonBigDL
  363. def loadTorch(path: String): AbstractModule[Activity, Activity, T]

    Definition Classes
    PythonBigDL
  364. def localImageFrameToImageTensor(imageFrame: LocalImageFrame, floatKey: String = ImageFeature.floats, toChw: Boolean = true): List[JTensor]

    Definition Classes
    PythonBigDL
  365. def localImageFrameToLabelTensor(imageFrame: LocalImageFrame): List[JTensor]

    Definition Classes
    PythonBigDL
  366. def localImageFrameToPredict(imageFrame: LocalImageFrame, key: String): List[List[Any]]

    Definition Classes
    PythonBigDL
  367. def localImageFrameToSample(imageFrame: LocalImageFrame, key: String): List[Sample]

    Definition Classes
    PythonBigDL
  368. def localImageFrameToUri(imageFrame: LocalImageFrame, key: String): List[String]

    Definition Classes
    PythonBigDL
  369. def modelBackward(model: AbstractModule[Activity, Activity, T], input: List[_ <: AnyRef], inputIsTable: Boolean, gradOutput: List[_ <: AnyRef], gradOutputIsTable: Boolean): List[JTensor]

    Definition Classes
    PythonBigDL
  370. def modelEvaluate(model: AbstractModule[Activity, Activity, T], valRDD: JavaRDD[Sample], batchSize: Int, valMethods: List[ValidationMethod[T]]): List[EvaluatedResult]

    Definition Classes
    PythonBigDL
  371. def modelEvaluateImageFrame(model: AbstractModule[Activity, Activity, T], imageFrame: ImageFrame, batchSize: Int, valMethods: List[ValidationMethod[T]]): List[EvaluatedResult]

    Definition Classes
    PythonBigDL
  372. def modelForward(model: AbstractModule[Activity, Activity, T], input: List[_ <: AnyRef], inputIsTable: Boolean): List[JTensor]

    Definition Classes
    PythonBigDL
  373. def modelGetParameters(model: AbstractModule[Activity, Activity, T]): Map[Any, Map[Any, List[List[Any]]]]

    Definition Classes
    PythonBigDL
  374. def modelPredictClass(model: AbstractModule[Activity, Activity, T], dataRdd: JavaRDD[Sample]): JavaRDD[Int]

    Definition Classes
    PythonBigDL
  375. def modelPredictImage(model: AbstractModule[Activity, Activity, T], imageFrame: ImageFrame, featLayerName: String, shareBuffer: Boolean, batchPerPartition: Int, predictKey: String): ImageFrame

    Definition Classes
    PythonBigDL
  376. def modelPredictRDD(model: AbstractModule[Activity, Activity, T], dataRdd: JavaRDD[Sample], batchSize: Int = 1): JavaRDD[JTensor]

    Definition Classes
    PythonBigDL
  377. def modelSave(module: AbstractModule[Activity, Activity, T], path: String, overWrite: Boolean): Unit

    Definition Classes
    PythonBigDL
  378. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  379. final def notify(): Unit

    Definition Classes
    AnyRef
  380. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  381. def predictLocal(model: AbstractModule[Activity, Activity, T], features: List[JTensor], batchSize: Int = 1): List[JTensor]

    Definition Classes
    PythonBigDL
  382. def predictLocalClass(model: AbstractModule[Activity, Activity, T], features: List[JTensor]): List[Int]

    Definition Classes
    PythonBigDL
  383. def quantize(module: AbstractModule[Activity, Activity, T]): Module[T]

    Definition Classes
    PythonBigDL
  384. def read(path: String, sc: JavaSparkContext, minPartitions: Int): ImageFrame

    Definition Classes
    PythonBigDL
  385. def readParquet(path: String, sc: JavaSparkContext): DistributedImageFrame

    Definition Classes
    PythonBigDL
  386. def redirectSparkLogs(logPath: String): Unit

    Definition Classes
    PythonBigDL
  387. def saveBigDLModule(module: AbstractModule[Activity, Activity, T], modulePath: String, weightPath: String, overWrite: Boolean): Unit

    Definition Classes
    PythonBigDL
  388. def saveCaffe(module: AbstractModule[Activity, Activity, T], prototxtPath: String, modelPath: String, useV2: Boolean = true, overwrite: Boolean = false): Unit

    Definition Classes
    PythonBigDL
  389. def saveGraphTopology(model: Graph[T], logPath: String): Graph[T]

    Definition Classes
    PythonBigDL
  390. def saveOptimMethod(method: OptimMethod[T], path: String, overWrite: Boolean = false): Unit

    Definition Classes
    PythonBigDL
  391. def saveTF(model: AbstractModule[Activity, Activity, T], inputs: List[Any], path: String, byteOrder: String, dataFormat: String): Unit

    Definition Classes
    PythonBigDL
  392. def saveTensorDictionary(tensors: HashMap[String, JTensor], path: String): Unit

    Save tensor dictionary to a Java hashmap object file

    Save tensor dictionary to a Java hashmap object file

    Definition Classes
    PythonBigDL
  393. def seqFilesToImageFrame(url: String, sc: JavaSparkContext, classNum: Int, partitionNum: Int): ImageFrame

    Definition Classes
    PythonBigDL
  394. def setBatchSizeDLClassifier(classifier: DLClassifier[T], batchSize: Int): DLClassifier[T]

    Definition Classes
    PythonBigDL
  395. def setBatchSizeDLClassifierModel(dlClassifierModel: DLClassifierModel[T], batchSize: Int): DLClassifierModel[T]

    Definition Classes
    PythonBigDL
  396. def setBatchSizeDLEstimator(estimator: DLEstimator[T], batchSize: Int): DLEstimator[T]

    Definition Classes
    PythonBigDL
  397. def setBatchSizeDLModel(dlModel: DLModel[T], batchSize: Int): DLModel[T]

    Definition Classes
    PythonBigDL
  398. def setCheckPoint(optimizer: Optimizer[T, MiniBatch[T]], trigger: Trigger, checkPointPath: String, isOverwrite: Boolean): Unit

    Definition Classes
    PythonBigDL
  399. def setConstantClip(optimizer: Optimizer[T, MiniBatch[T]], min: Float, max: Float): Unit

    Definition Classes
    PythonBigDL
  400. def setCriterion(optimizer: Optimizer[T, MiniBatch[T]], criterion: Criterion[T]): Unit

    Definition Classes
    PythonBigDL
  401. def setFeatureSizeDLClassifierModel(dlClassifierModel: DLClassifierModel[T], featureSize: ArrayList[Int]): DLClassifierModel[T]

    Definition Classes
    PythonBigDL
  402. def setFeatureSizeDLModel(dlModel: DLModel[T], featureSize: ArrayList[Int]): DLModel[T]

    Definition Classes
    PythonBigDL
  403. def setInitMethod(layer: Initializable, initMethods: ArrayList[InitializationMethod]): layer.type

    Definition Classes
    PythonBigDL
  404. def setInitMethod(layer: Initializable, weightInitMethod: InitializationMethod, biasInitMethod: InitializationMethod): layer.type

    Definition Classes
    PythonBigDL
  405. def setInputFormats(graph: StaticGraph[T], inputFormat: List[Int]): StaticGraph[T]

    Definition Classes
    PythonBigDL
  406. def setL2NormClip(optimizer: Optimizer[T, MiniBatch[T]], normValue: Float): Unit

    Definition Classes
    PythonBigDL
  407. def setLabel(labelMap: Map[String, Float], imageFrame: ImageFrame): Unit

    Definition Classes
    PythonBigDL
  408. def setLearningRateDLClassifier(classifier: DLClassifier[T], lr: Double): DLClassifier[T]

    Definition Classes
    PythonBigDL
  409. def setLearningRateDLEstimator(estimator: DLEstimator[T], lr: Double): DLEstimator[T]

    Definition Classes
    PythonBigDL
  410. def setMaxEpochDLClassifier(classifier: DLClassifier[T], maxEpoch: Int): DLClassifier[T]

    Definition Classes
    PythonBigDL
  411. def setMaxEpochDLEstimator(estimator: DLEstimator[T], maxEpoch: Int): DLEstimator[T]

    Definition Classes
    PythonBigDL
  412. def setModelSeed(seed: Long): Unit

    Definition Classes
    PythonBigDL
  413. def setOptimizerVersion(version: String): Unit

    Definition Classes
    PythonBigDL
  414. def setOutputFormats(graph: StaticGraph[T], outputFormat: List[Int]): StaticGraph[T]

    Definition Classes
    PythonBigDL
  415. def setRunningMean(module: BatchNormalization[T], runningMean: JTensor): Unit

    Definition Classes
    PythonBigDL
  416. def setRunningStd(module: BatchNormalization[T], runningStd: JTensor): Unit

    Definition Classes
    PythonBigDL
  417. def setStopGradient(model: Graph[T], layers: List[String]): Graph[T]

    Definition Classes
    PythonBigDL
  418. def setTrainData(optimizer: Optimizer[T, MiniBatch[T]], trainingRdd: JavaRDD[Sample], batchSize: Int): Unit

    Definition Classes
    PythonBigDL
  419. def setTrainSummary(optimizer: Optimizer[T, MiniBatch[T]], summary: TrainSummary): Unit

    Definition Classes
    PythonBigDL
  420. def setValSummary(optimizer: Optimizer[T, MiniBatch[T]], summary: ValidationSummary): Unit

    Definition Classes
    PythonBigDL
  421. def setValidation(optimizer: Optimizer[T, MiniBatch[T]], batchSize: Int, trigger: Trigger, xVal: List[JTensor], yVal: JTensor, vMethods: List[ValidationMethod[T]]): Unit

    Definition Classes
    PythonBigDL
  422. def setValidation(optimizer: Optimizer[T, MiniBatch[T]], batchSize: Int, trigger: Trigger, valRdd: JavaRDD[Sample], vMethods: List[ValidationMethod[T]]): Unit

    Definition Classes
    PythonBigDL
  423. def setValidationFromDataSet(optimizer: Optimizer[T, MiniBatch[T]], batchSize: Int, trigger: Trigger, valDataSet: DataSet[ImageFeature], vMethods: List[ValidationMethod[T]]): Unit

    Definition Classes
    PythonBigDL
  424. def setWeights(model: AbstractModule[Activity, Activity, T], weights: List[JTensor]): Unit

    Definition Classes
    PythonBigDL
  425. def showBigDlInfoLogs(): Unit

    Definition Classes
    PythonBigDL
  426. def summaryReadScalar(summary: Summary, tag: String): List[List[Any]]

    Definition Classes
    PythonBigDL
  427. def summarySetTrigger(summary: TrainSummary, summaryName: String, trigger: Trigger): TrainSummary

    Definition Classes
    PythonBigDL
  428. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  429. def testActivityWithTableOfTable(): JActivity

  430. def testActivityWithTableOfTensor(): JActivity

  431. def testActivityWithTensor(): JActivity

  432. def testDict(): Map[String, String]

  433. def testDictJMapJTensor(): Map[String, Map[String, JTensor]]

  434. def testDictJTensor(): Map[String, JTensor]

  435. def testSample(sample: Sample): Sample

    Definition Classes
    PythonBigDL
  436. def testTensor(jTensor: JTensor): JTensor

    Definition Classes
    PythonBigDL
  437. def toGraph(sequential: Sequential[T]): StaticGraph[T]

    Definition Classes
    PythonBigDL
  438. def toJSample(psamples: RDD[Sample]): RDD[dataset.Sample[T]]

    Definition Classes
    PythonBigDL
  439. def toJSample(record: Sample): dataset.Sample[T]

    Definition Classes
    PythonBigDL
  440. def toJTensor(tensor: Tensor[T]): JTensor

    Definition Classes
    PythonBigDL
  441. def toPySample(sample: dataset.Sample[T]): Sample

    Definition Classes
    PythonBigDL
  442. def toSampleArray(Xs: List[Tensor[T]], y: Tensor[T] = null): Array[dataset.Sample[T]]

    Definition Classes
    PythonBigDL
  443. def toString(): String

    Definition Classes
    AnyRef → Any
  444. def toTensor(jTensor: JTensor): Tensor[T]

    Definition Classes
    PythonBigDL
  445. def trainTF(modelPath: String, output: String, samples: JavaRDD[Sample], optMethod: OptimMethod[T], criterion: Criterion[T], batchSize: Int, endWhen: Trigger): AbstractModule[Activity, Activity, T]

    Definition Classes
    PythonBigDL
  446. def transformImageFeature(transformer: FeatureTransformer, feature: ImageFeature): ImageFeature

    Definition Classes
    PythonBigDL
  447. def transformImageFrame(transformer: FeatureTransformer, imageFrame: ImageFrame): ImageFrame

    Definition Classes
    PythonBigDL
  448. def unFreeze(model: AbstractModule[Activity, Activity, T], names: List[String]): AbstractModule[Activity, Activity, T]

    Definition Classes
    PythonBigDL
  449. def uniform(a: Double, b: Double, size: List[Int]): JTensor

    Definition Classes
    PythonBigDL
  450. def updateParameters(model: AbstractModule[Activity, Activity, T], lr: Double): Unit

    Definition Classes
    PythonBigDL
  451. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  452. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  453. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  454. def writeParquet(path: String, output: String, sc: JavaSparkContext, partitionNum: Int = 1): Unit

    Definition Classes
    PythonBigDL

Inherited from PythonBigDL[T]

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped