Source code for bigdl.nn.onnx.layer

#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

import sys
import numpy as np
from bigdl.nn.layer import Layer
from bigdl.util.common import JTensor

if sys.version >= '3':
    long = int
    unicode = str


[docs]class Constant(Layer): """ >>> value = np.random.random((3, 3)) >>> constant = Constant(value) creating: createConstant """ def __init__(self, value, bigdl_type="float"): super(Constant, self).__init__(None, bigdl_type, JTensor.from_ndarray(value))
[docs]class Gather(Layer): """ >>> constant = Gather() creating: createGather """ def __init__(self, bigdl_type="float"): super(Gather, self).__init__(None, bigdl_type)
[docs]class Gemm(Layer): """ General Matrix multiplication: https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms#Level_3 A' = transpose(A) if transA else A B' = transpose(B) if transB else B Compute Y = alpha * A' * B' + beta * C, where input tensor A has shape (M, K) or (K, M), input tensor B has shape (K, N) or (N, K), input tensor C is broadcastable to shape (M, N), and output tensor Y has shape (M, N). A will be transposed before doing the computation if attribute transA is non-zero, same for B and transB. >>> matrix_b = np.random.random([2, 2]) >>> matrix_c = np.random.random([2, 2]) >>> gemm = Gemm(matrix_b=matrix_b, matrix_c=matrix_c) creating: createGemm """ def __init__(self, matrix_b, matrix_c, alpha=float(1.0), beta=float(1.0), trans_a=0, trans_b=0, bigdl_type="float"): super(Gemm, self).__init__(None, bigdl_type, alpha, beta, trans_a, trans_b, JTensor.from_ndarray(matrix_b), JTensor.from_ndarray(matrix_c))
[docs]class Reshape(Layer): """ A layer which takes a tensor as input and outputs an 1D tensor containing the shape of the input. >>> shape = (2, 2) >>> reshape = Reshape(shape) creating: createReshape """ def __init__(self, shape=None, bigdl_type="float"): super(Reshape, self).__init__(None, bigdl_type, shape)
[docs]class Shape(Layer): """ A layer which takes a tensor as input and outputs an 1D tensor containing the shape of the input. >>> shape = Shape() creating: createShape """ def __init__(self, bigdl_type="float"): super(Shape, self).__init__(None, bigdl_type)