bigdl.dlframes package¶
Submodules¶
bigdl.dlframes.dl_classifier module¶
- 
class 
bigdl.dlframes.dl_classifier.DLClassifier(model, criterion, feature_size, bigdl_type='float')[source]¶ 
- 
class 
bigdl.dlframes.dl_classifier.DLClassifierModel(model, featureSize, jvalue=None, bigdl_type='float')[source]¶ 
- 
class 
bigdl.dlframes.dl_classifier.DLEstimator(model, criterion, feature_size, label_size, jvalue=None, bigdl_type='float')[source]¶ Bases:
pyspark.ml.base.Estimator,pyspark.ml.param.shared.HasFeaturesCol,pyspark.ml.param.shared.HasLabelCol,pyspark.ml.param.shared.HasPredictionCol,bigdl.dlframes.dl_classifier.HasBatchSize,bigdl.dlframes.dl_classifier.HasMaxEpoch,bigdl.dlframes.dl_classifier.HasLearningRate,bigdl.util.common.JavaValue
- 
class 
bigdl.dlframes.dl_classifier.DLModel(model, featureSize, jvalue=None, bigdl_type='float')[source]¶ Bases:
pyspark.ml.base.Model,pyspark.ml.param.shared.HasFeaturesCol,pyspark.ml.param.shared.HasPredictionCol,bigdl.dlframes.dl_classifier.HasBatchSize,bigdl.dlframes.dl_classifier.HasFeatureSize,bigdl.util.common.JavaValue
- 
class 
bigdl.dlframes.dl_classifier.HasBatchSize[source]¶ Bases:
pyspark.ml.param.ParamsMixin for param batchSize: batch size.
- 
batchSize= Param(parent='undefined', name='batchSize', doc='batchSize')¶ param for batch size.
- 
 
- 
class 
bigdl.dlframes.dl_classifier.HasFeatureSize[source]¶ Bases:
pyspark.ml.param.Params- 
featureSize= Param(parent='undefined', name='featureSize', doc='size of the feature')¶ 
- 
 
bigdl.dlframes.dl_image_reader module¶
- 
class 
bigdl.dlframes.dl_image_reader.DLImageReader[source]¶ Primary DataFrame-based image loading interface, defining API to read images from files to DataFrame.
- 
static 
readImages(path, sc=None, minParitions=1, bigdl_type='float')[source]¶ Read the directory of images into DataFrame from the local or remote source. :param path Directory to the input data files, the path can be comma separated paths as the list of inputs. Wildcards path are supported similarly to sc.binaryFiles(path). :param min_partitions A suggestion value of the minimal splitting number for input data. :return DataFrame with a single column “image”; Each record in the column represents one image record: Row (uri, height, width, channels, CvType, bytes)
- 
static 
 
bigdl.dlframes.dl_image_transformer module¶
- 
class 
bigdl.dlframes.dl_image_transformer.DLImageTransformer(transformer, jvalue=None, bigdl_type='float')[source]¶ Bases:
pyspark.ml.wrapper.JavaTransformer,pyspark.ml.param.shared.HasInputCol,pyspark.ml.param.shared.HasOutputCol,bigdl.util.common.JavaValueProvides DataFrame-based API for image pre-processing and feature transformation. DLImageTransformer follows the Spark Transformer API pattern and can be used as one stage in Spark ML pipeline.
The input column can be either DLImageSchema.byteSchema or DLImageSchema.floatSchema. If using DLImageReader, the default format is DLImageSchema.byteSchema The output column is always DLImageSchema.floatSchema.