com
.
intel
.
analytics
.
bigdl
.
models
.
inception
.
Options
TrainParams
Related Doc:
package Options
case class
TrainParams
(
folder:
String
=
"./"
,
checkpoint:
Option
[
String
] =
None
,
modelSnapshot:
Option
[
String
] =
None
,
stateSnapshot:
Option
[
String
] =
None
,
classNumber:
Int
=
1000
,
batchSize:
Int
=
1
,
learningRate:
Double
=
0.01
,
env:
String
=
"local"
,
overWriteCheckpoint:
Boolean
=
false
,
maxEpoch:
Option
[
Int
] =
None
,
maxIteration:
Int
=
62000
,
weightDecay:
Double
=
0.0001
,
checkpointIteration:
Int
=
620
,
graphModel:
Boolean
=
false
,
maxLr:
Option
[
Double
] =
None
,
warmupEpoch:
Option
[
Int
] =
None
,
gradientL2NormThreshold:
Option
[
Double
] =
None
,
gradientMin:
Option
[
Double
] =
None
,
gradientMax:
Option
[
Double
] =
None
,
optimizerVersion:
Option
[
String
] =
None
)
extends
Product
with
Serializable
Linear Supertypes
Serializable
,
Serializable
,
Product
,
Equals
,
AnyRef
,
Any
Ordering
Alphabetic
By Inheritance
Inherited
TrainParams
Serializable
Serializable
Product
Equals
AnyRef
Any
Hide All
Show All
Visibility
Public
All
Instance Constructors
new
TrainParams
(
folder:
String
=
"./"
,
checkpoint:
Option
[
String
] =
None
,
modelSnapshot:
Option
[
String
] =
None
,
stateSnapshot:
Option
[
String
] =
None
,
classNumber:
Int
=
1000
,
batchSize:
Int
=
1
,
learningRate:
Double
=
0.01
,
env:
String
=
"local"
,
overWriteCheckpoint:
Boolean
=
false
,
maxEpoch:
Option
[
Int
] =
None
,
maxIteration:
Int
=
62000
,
weightDecay:
Double
=
0.0001
,
checkpointIteration:
Int
=
620
,
graphModel:
Boolean
=
false
,
maxLr:
Option
[
Double
] =
None
,
warmupEpoch:
Option
[
Int
] =
None
,
gradientL2NormThreshold:
Option
[
Double
] =
None
,
gradientMin:
Option
[
Double
] =
None
,
gradientMax:
Option
[
Double
] =
None
,
optimizerVersion:
Option
[
String
] =
None
)
Value Members
final
def
!=
(
arg0:
Any
)
:
Boolean
Definition Classes
AnyRef → Any
final
def
##
()
:
Int
Definition Classes
AnyRef → Any
final
def
==
(
arg0:
Any
)
:
Boolean
Definition Classes
AnyRef → Any
final
def
asInstanceOf
[
T0
]
:
T0
Definition Classes
Any
val
batchSize
:
Int
val
checkpoint
:
Option
[
String
]
val
checkpointIteration
:
Int
val
classNumber
:
Int
def
clone
()
:
AnyRef
Attributes
protected[
java.lang
]
Definition Classes
AnyRef
Annotations
@throws
(
...
)
val
env
:
String
final
def
eq
(
arg0:
AnyRef
)
:
Boolean
Definition Classes
AnyRef
def
finalize
()
:
Unit
Attributes
protected[
java.lang
]
Definition Classes
AnyRef
Annotations
@throws
(
classOf[java.lang.Throwable]
)
val
folder
:
String
final
def
getClass
()
:
Class
[_]
Definition Classes
AnyRef → Any
val
gradientL2NormThreshold
:
Option
[
Double
]
val
gradientMax
:
Option
[
Double
]
val
gradientMin
:
Option
[
Double
]
val
graphModel
:
Boolean
final
def
isInstanceOf
[
T0
]
:
Boolean
Definition Classes
Any
val
learningRate
:
Double
val
maxEpoch
:
Option
[
Int
]
val
maxIteration
:
Int
val
maxLr
:
Option
[
Double
]
val
modelSnapshot
:
Option
[
String
]
final
def
ne
(
arg0:
AnyRef
)
:
Boolean
Definition Classes
AnyRef
final
def
notify
()
:
Unit
Definition Classes
AnyRef
final
def
notifyAll
()
:
Unit
Definition Classes
AnyRef
val
optimizerVersion
:
Option
[
String
]
val
overWriteCheckpoint
:
Boolean
val
stateSnapshot
:
Option
[
String
]
final
def
synchronized
[
T0
]
(
arg0: ⇒
T0
)
:
T0
Definition Classes
AnyRef
final
def
wait
()
:
Unit
Definition Classes
AnyRef
Annotations
@throws
(
...
)
final
def
wait
(
arg0:
Long
,
arg1:
Int
)
:
Unit
Definition Classes
AnyRef
Annotations
@throws
(
...
)
final
def
wait
(
arg0:
Long
)
:
Unit
Definition Classes
AnyRef
Annotations
@throws
(
...
)
val
warmupEpoch
:
Option
[
Int
]
val
weightDecay
:
Double
Inherited from
Serializable
Inherited from
Serializable
Inherited from
Product
Inherited from
Equals
Inherited from
AnyRef
Inherited from
Any
Ungrouped