Class/Object

com.intel.analytics.bigdl.nn

KullbackLeiblerDivergenceCriterion

Related Docs: object KullbackLeiblerDivergenceCriterion | package nn

Permalink

class KullbackLeiblerDivergenceCriterion[T] extends TensorCriterion[T]

This method is same as kullback_leibler_divergence loss in keras. Loss calculated as: y_true = K.clip(y_true, K.epsilon(), 1) y_pred = K.clip(y_pred, K.epsilon(), 1) and output K.sum(y_true * K.log(y_true / y_pred), axis=-1)

T

The numeric type in the criterion, usually which are Float or Double

Linear Supertypes
TensorCriterion[T], AbstractCriterion[Tensor[T], Tensor[T], T], Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. KullbackLeiblerDivergenceCriterion
  2. TensorCriterion
  3. AbstractCriterion
  4. Serializable
  5. Serializable
  6. AnyRef
  7. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new KullbackLeiblerDivergenceCriterion()(implicit arg0: ClassTag[T], ev: TensorNumeric[T])

    Permalink

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  5. def backward(input: Tensor[T], target: Tensor[T]): Tensor[T]

    Permalink

    Performs a back-propagation step through the criterion, with respect to the given input.

    Performs a back-propagation step through the criterion, with respect to the given input.

    input

    input data

    target

    target

    returns

    gradient corresponding to input data

    Definition Classes
    AbstractCriterion
  6. var bufferInput: Tensor[T]

    Permalink
  7. var bufferTarget: Tensor[T]

    Permalink
  8. def canEqual(other: Any): Boolean

    Permalink
    Definition Classes
    AbstractCriterion
  9. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  10. def cloneCriterion(): AbstractCriterion[Tensor[T], Tensor[T], T]

    Permalink

    Deep copy this criterion

    Deep copy this criterion

    returns

    a deep copied criterion

    Definition Classes
    AbstractCriterion
  11. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  12. def equals(other: Any): Boolean

    Permalink
    Definition Classes
    AbstractCriterion → AnyRef → Any
  13. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  14. def forward(input: Tensor[T], target: Tensor[T]): T

    Permalink

    Takes an input object, and computes the corresponding loss of the criterion, compared with target.

    Takes an input object, and computes the corresponding loss of the criterion, compared with target.

    input

    input data

    target

    target

    returns

    the loss of criterion

    Definition Classes
    AbstractCriterion
  15. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  16. var gradInput: Tensor[T]

    Permalink
    Definition Classes
    AbstractCriterion
  17. def hashCode(): Int

    Permalink
    Definition Classes
    AbstractCriterion → AnyRef → Any
  18. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  19. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  20. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  21. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  22. var output: T

    Permalink
    Definition Classes
    AbstractCriterion
  23. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  24. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  25. def updateGradInput(input: Tensor[T], target: Tensor[T]): Tensor[T]

    Permalink

    back propagation with: - target / input

    back propagation with: - target / input

    input

    input data

    target

    target data / labels

    returns

    gradient of input

    Definition Classes
    KullbackLeiblerDivergenceCriterionAbstractCriterion
  26. def updateOutput(input: Tensor[T], target: Tensor[T]): T

    Permalink

    It calculates: y_true = K.clip(y_true, K.epsilon(), 1) y_pred = K.clip(y_pred, K.epsilon(), 1) and output K.sum(y_true * K.log(y_true / y_pred), axis=-1)

    It calculates: y_true = K.clip(y_true, K.epsilon(), 1) y_pred = K.clip(y_pred, K.epsilon(), 1) and output K.sum(y_true * K.log(y_true / y_pred), axis=-1)

    input

    input of the criterion

    target

    target or labels

    returns

    the loss of the criterion

    Definition Classes
    KullbackLeiblerDivergenceCriterionAbstractCriterion
  27. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  28. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  29. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from TensorCriterion[T]

Inherited from AbstractCriterion[Tensor[T], Tensor[T], T]

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped