Class/Object

com.intel.analytics.bigdl.nn

MarginCriterion

Related Docs: object MarginCriterion | package nn

Permalink

class MarginCriterion[T] extends TensorCriterion[T]

Creates a criterion that optimizes a two-class classification (squared) hinge loss (margin-based loss) between input x (a Tensor of dimension 1) and output y.

When margin = 1, sizeAverage = True and squared = False, this is the same as hinge loss in keras; When margin = 1, sizeAverage = False and squared = True, this is the same as squared_hinge loss in keras.

Annotations
@SerialVersionUID()
Linear Supertypes
TensorCriterion[T], AbstractCriterion[Tensor[T], Tensor[T], T], Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. MarginCriterion
  2. TensorCriterion
  3. AbstractCriterion
  4. Serializable
  5. Serializable
  6. AnyRef
  7. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new MarginCriterion(margin: Double = 1.0, sizeAverage: Boolean = true, squared: Boolean = false)(implicit arg0: ClassTag[T], ev: TensorNumeric[T])

    Permalink

    margin

    if unspecified, is by default 1.

    sizeAverage

    whether to average the loss

    squared

    whether to calculate the squared hinge loss

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  5. def backward(input: Tensor[T], target: Tensor[T]): Tensor[T]

    Permalink

    Performs a back-propagation step through the criterion, with respect to the given input.

    Performs a back-propagation step through the criterion, with respect to the given input.

    input

    input data

    target

    target

    returns

    gradient corresponding to input data

    Definition Classes
    AbstractCriterion
  6. def canEqual(other: Any): Boolean

    Permalink
    Definition Classes
    MarginCriterionAbstractCriterion
  7. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  8. def cloneCriterion(): AbstractCriterion[Tensor[T], Tensor[T], T]

    Permalink

    Deep copy this criterion

    Deep copy this criterion

    returns

    a deep copied criterion

    Definition Classes
    AbstractCriterion
  9. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  10. def equals(other: Any): Boolean

    Permalink
    Definition Classes
    MarginCriterionAbstractCriterion → AnyRef → Any
  11. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  12. def forward(input: Tensor[T], target: Tensor[T]): T

    Permalink

    Takes an input object, and computes the corresponding loss of the criterion, compared with target.

    Takes an input object, and computes the corresponding loss of the criterion, compared with target.

    input

    input data

    target

    target

    returns

    the loss of criterion

    Definition Classes
    AbstractCriterion
  13. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  14. var gradInput: Tensor[T]

    Permalink
    Definition Classes
    AbstractCriterion
  15. def hashCode(): Int

    Permalink
    Definition Classes
    MarginCriterionAbstractCriterion → AnyRef → Any
  16. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  17. val margin: Double

    Permalink

    if unspecified, is by default 1.

  18. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  19. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  20. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  21. var output: T

    Permalink
    Definition Classes
    AbstractCriterion
  22. val sizeAverage: Boolean

    Permalink

    whether to average the loss

  23. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  24. def toString(): String

    Permalink
    Definition Classes
    MarginCriterion → AnyRef → Any
  25. def updateGradInput(input: Tensor[T], target: Tensor[T]): Tensor[T]

    Permalink

    Computing the gradient of the criterion with respect to its own input.

    Computing the gradient of the criterion with respect to its own input. This is returned in gradInput. Also, the gradInput state variable is updated accordingly.

    input

    input data

    target

    target data / labels

    returns

    gradient of input

    Definition Classes
    MarginCriterionAbstractCriterion
  26. def updateOutput(input: Tensor[T], target: Tensor[T]): T

    Permalink

    Computes the loss using input and objective function.

    Computes the loss using input and objective function. This function returns the result which is stored in the output field.

    input

    input of the criterion

    target

    target or labels

    returns

    the loss of the criterion

    Definition Classes
    MarginCriterionAbstractCriterion
  27. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  28. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  29. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from TensorCriterion[T]

Inherited from AbstractCriterion[Tensor[T], Tensor[T], T]

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped