Class/Object

com.intel.analytics.bigdl.nn

MultiCriterion

Related Docs: object MultiCriterion | package nn

Permalink

class MultiCriterion[T] extends AbstractCriterion[Activity, Activity, T]

a weighted sum of other criterions each applied to the same input and target;

Annotations
@SerialVersionUID()
Linear Supertypes
AbstractCriterion[Activity, Activity, T], Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. MultiCriterion
  2. AbstractCriterion
  3. Serializable
  4. Serializable
  5. AnyRef
  6. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new MultiCriterion()(implicit arg0: ClassTag[T], ev: TensorNumeric[T])

    Permalink

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. def add(criterion: AbstractCriterion[Activity, Activity, T], weight: Double = 1): Unit

    Permalink
  5. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  6. def backward(input: Activity, target: Activity): Activity

    Permalink

    Performs a back-propagation step through the criterion, with respect to the given input.

    Performs a back-propagation step through the criterion, with respect to the given input.

    input

    input data

    target

    target

    returns

    gradient corresponding to input data

    Definition Classes
    AbstractCriterion
  7. def canEqual(other: Any): Boolean

    Permalink
    Definition Classes
    MultiCriterionAbstractCriterion
  8. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  9. def cloneCriterion(): AbstractCriterion[Activity, Activity, T]

    Permalink

    Deep copy this criterion

    Deep copy this criterion

    returns

    a deep copied criterion

    Definition Classes
    AbstractCriterion
  10. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  11. def equals(other: Any): Boolean

    Permalink
    Definition Classes
    MultiCriterionAbstractCriterion → AnyRef → Any
  12. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  13. def forward(input: Activity, target: Activity): T

    Permalink

    Takes an input object, and computes the corresponding loss of the criterion, compared with target.

    Takes an input object, and computes the corresponding loss of the criterion, compared with target.

    input

    input data

    target

    target

    returns

    the loss of criterion

    Definition Classes
    AbstractCriterion
  14. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  15. var gradInput: Activity

    Permalink
    Definition Classes
    AbstractCriterion
  16. def hashCode(): Int

    Permalink
    Definition Classes
    MultiCriterionAbstractCriterion → AnyRef → Any
  17. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  18. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  19. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  20. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  21. var output: T

    Permalink
    Definition Classes
    AbstractCriterion
  22. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  23. def toString(): String

    Permalink
    Definition Classes
    MultiCriterion → AnyRef → Any
  24. def updateGradInput(input: Activity, target: Activity): Activity

    Permalink

    Computing the gradient of the criterion with respect to its own input.

    Computing the gradient of the criterion with respect to its own input. This is returned in gradInput. Also, the gradInput state variable is updated accordingly.

    input

    input data

    target

    target data / labels

    returns

    gradient of input

    Definition Classes
    MultiCriterionAbstractCriterion
  25. def updateOutput(input: Activity, target: Activity): T

    Permalink

    Computes the loss using input and objective function.

    Computes the loss using input and objective function. This function returns the result which is stored in the output field.

    input

    input of the criterion

    target

    target or labels

    returns

    the loss of the criterion

    Definition Classes
    MultiCriterionAbstractCriterion
  26. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  27. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  28. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from AbstractCriterion[Activity, Activity, T]

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped