Class/Object

com.intel.analytics.bigdl.nn

ParallelCriterion

Related Docs: object ParallelCriterion | package nn

Permalink

class ParallelCriterion[T] extends AbstractCriterion[Table, Table, T]

ParallelCriterion is a weighted sum of other criterions each applied to a different input and target. Set repeatTarget = true to share the target for criterions.

Use add(criterion[, weight]) method to add criterion. Where weight is a scalar(default 1).

Annotations
@SerialVersionUID()
Linear Supertypes
AbstractCriterion[Table, Table, T], Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. ParallelCriterion
  2. AbstractCriterion
  3. Serializable
  4. Serializable
  5. AnyRef
  6. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new ParallelCriterion(repeatTarget: Boolean = false)(implicit arg0: ClassTag[T], ev: TensorNumeric[T])

    Permalink

    repeatTarget

    Whether to share the target for all criterions.

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. def add(criterion: AbstractCriterion[_ <: Activity, _ <: Activity, T], weight: Double = 1.0): ParallelCriterion.this.type

    Permalink
  5. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  6. def backward(input: Table, target: Table): Table

    Permalink

    Performs a back-propagation step through the criterion, with respect to the given input.

    Performs a back-propagation step through the criterion, with respect to the given input.

    input

    input data

    target

    target

    returns

    gradient corresponding to input data

    Definition Classes
    AbstractCriterion
  7. def canEqual(other: Any): Boolean

    Permalink
    Definition Classes
    AbstractCriterion
  8. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  9. def cloneCriterion(): AbstractCriterion[Table, Table, T]

    Permalink

    Deep copy this criterion

    Deep copy this criterion

    returns

    a deep copied criterion

    Definition Classes
    AbstractCriterion
  10. val criterions: Table

    Permalink
  11. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  12. def equals(other: Any): Boolean

    Permalink
    Definition Classes
    AbstractCriterion → AnyRef → Any
  13. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  14. def forward(input: Table, target: Table): T

    Permalink

    Takes an input object, and computes the corresponding loss of the criterion, compared with target.

    Takes an input object, and computes the corresponding loss of the criterion, compared with target.

    input

    input data

    target

    target

    returns

    the loss of criterion

    Definition Classes
    AbstractCriterion
  15. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  16. var gradInput: Table

    Permalink
    Definition Classes
    AbstractCriterion
  17. def hashCode(): Int

    Permalink
    Definition Classes
    AbstractCriterion → AnyRef → Any
  18. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  19. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  20. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  21. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  22. var output: T

    Permalink
    Definition Classes
    AbstractCriterion
  23. val outputs: Table

    Permalink
  24. val repeatTarget: Boolean

    Permalink

    Whether to share the target for all criterions.

  25. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  26. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  27. def updateGradInput(input: Table, target: Table): Table

    Permalink

    Computing the gradient of the criterion with respect to its own input.

    Computing the gradient of the criterion with respect to its own input. This is returned in gradInput. Also, the gradInput state variable is updated accordingly.

    input

    input data

    target

    target data / labels

    returns

    gradient of input

    Definition Classes
    ParallelCriterionAbstractCriterion
  28. def updateOutput(input: Table, target: Table): T

    Permalink

    Computes the loss using input and objective function.

    Computes the loss using input and objective function. This function returns the result which is stored in the output field.

    input

    input of the criterion

    target

    target or labels

    returns

    the loss of the criterion

    Definition Classes
    ParallelCriterionAbstractCriterion
  29. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  30. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  31. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  32. val weights: Table

    Permalink

Inherited from AbstractCriterion[Table, Table, T]

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped