Class/Object

com.intel.analytics.bigdl.nn

RecurrentDecoder

Related Docs: object RecurrentDecoder | package nn

Permalink

class RecurrentDecoder[T] extends Recurrent[T]

RecurrentDecoder module is a container of rnn cells that used to make a prediction of the next timestep based on the prediction we made from the previous timestep. Input for RecurrentDecoder is dynamically composed during training. input at t(i) is output at t(i-1), input at t(0) is user input, and user input has to be batch x stepShape(shape of the input at a single time step).

Different types of rnn cells can be added using add() function.

Linear Supertypes
Recurrent[T], DynamicContainer[Tensor[T], Tensor[T], T], Container[Tensor[T], Tensor[T], T], AbstractModule[Tensor[T], Tensor[T], T], InferShape, Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. RecurrentDecoder
  2. Recurrent
  3. DynamicContainer
  4. Container
  5. AbstractModule
  6. InferShape
  7. Serializable
  8. Serializable
  9. AnyRef
  10. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new RecurrentDecoder(seqLength: Int)(implicit arg0: ClassTag[T], ev: TensorNumeric[T])

    Permalink

    seqLength

    sequence length of the output

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. var _input: Table

    Permalink
    Attributes
    protected
    Definition Classes
    Recurrent
  5. def accGradParameters(input: Tensor[T], gradOutput: Tensor[T]): Unit

    Permalink

    Computing the gradient of the module with respect to its own parameters.

    Computing the gradient of the module with respect to its own parameters. Many modules do not perform this step as they do not have any parameters. The state variable name for the parameters is module dependent. The module is expected to accumulate the gradients with respect to the parameters in some variable.

    Definition Classes
    RecurrentDecoderRecurrentAbstractModule
  6. def add(module: AbstractModule[_ <: Activity, _ <: Activity, T]): RecurrentDecoder.this.type

    Permalink

    modules: -- preTopology |- topology (cell)

    modules: -- preTopology |- topology (cell)

    The topology (or cell) will be cloned for N times w.r.t the time dimension. The preTopology will be execute only once before the recurrence.

    module

    module to be add

    returns

    this container

    Definition Classes
    RecurrentDecoderRecurrentDynamicContainer
  7. def apply(name: String): Option[AbstractModule[Activity, Activity, T]]

    Permalink

    Find a module with given name.

    Find a module with given name. If there is no module with given name, it will return None. If there are multiple modules with the given name, an exception will be thrown.

    Definition Classes
    ContainerAbstractModule
  8. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  9. def backward(input: Tensor[T], gradOutput: Tensor[T]): Tensor[T]

    Permalink

    Performs a back-propagation step through the module, with respect to the given input.

    Performs a back-propagation step through the module, with respect to the given input. In general this method makes the assumption forward(input) has been called before, with the same input. This is necessary for optimization reasons. If you do not respect this rule, backward() will compute incorrect gradients.

    input

    input data

    gradOutput

    gradient of next layer

    returns

    gradient corresponding to input data

    Definition Classes
    RecurrentDecoderRecurrentAbstractModule
  10. var backwardTime: Long

    Permalink
    Attributes
    protected
    Definition Classes
    AbstractModule
  11. val batchDim: Int

    Permalink
    Attributes
    protected
    Definition Classes
    Recurrent
  12. var batchNormParams: BatchNormParams[T]

    Permalink
    Definition Classes
    Recurrent
  13. var batchSize: Int

    Permalink
    Attributes
    protected
    Definition Classes
    Recurrent
  14. def canEqual(other: Any): Boolean

    Permalink
    Definition Classes
    RecurrentDecoderRecurrentContainerAbstractModule
  15. val cells: ArrayBuffer[Cell[T]]

    Permalink
    Attributes
    protected
    Definition Classes
    Recurrent
  16. final def checkEngineType(): RecurrentDecoder.this.type

    Permalink

    get execution engine type

    get execution engine type

    Definition Classes
    ContainerAbstractModule
  17. def clearState(): RecurrentDecoder.this.type

    Permalink

    Clear cached activities to save storage space or network bandwidth.

    Clear cached activities to save storage space or network bandwidth. Note that we use Tensor.set to keep some information like tensor share

    The subclass should override this method if it allocate some extra resource, and call the super.clearState in the override method

    Definition Classes
    RecurrentContainerAbstractModule
  18. final def clone(deepCopy: Boolean): AbstractModule[Tensor[T], Tensor[T], T]

    Permalink

    Clone the module, deep or shallow copy

    Clone the module, deep or shallow copy

    Definition Classes
    AbstractModule
  19. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  20. def cloneCells(): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Recurrent
  21. final def cloneModule(): RecurrentDecoder.this.type

    Permalink

    Clone the model

    Clone the model

    Definition Classes
    AbstractModule
  22. val currentGradOutput: Table

    Permalink
    Attributes
    protected
    Definition Classes
    Recurrent
  23. var currentInput: Table

    Permalink
    Attributes
    protected
    Definition Classes
    Recurrent
  24. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  25. def equals(other: Any): Boolean

    Permalink
    Definition Classes
    RecurrentDecoderRecurrentContainerAbstractModule → AnyRef → Any
  26. final def evaluate(): RecurrentDecoder.this.type

    Permalink

    Set the module to evaluate mode

    Set the module to evaluate mode

    Definition Classes
    ContainerAbstractModule
  27. final def evaluate(dataSet: LocalDataSet[MiniBatch[T]], vMethods: Array[_ <: ValidationMethod[T]]): Array[(ValidationResult, ValidationMethod[T])]

    Permalink

    use ValidationMethod to evaluate module on the given local dataset

    use ValidationMethod to evaluate module on the given local dataset

    Definition Classes
    AbstractModule
  28. final def evaluate(dataset: RDD[MiniBatch[T]], vMethods: Array[_ <: ValidationMethod[T]]): Array[(ValidationResult, ValidationMethod[T])]

    Permalink

    use ValidationMethod to evaluate module on the given rdd dataset

    use ValidationMethod to evaluate module on the given rdd dataset

    Definition Classes
    AbstractModule
  29. final def evaluate(dataset: RDD[Sample[T]], vMethods: Array[_ <: ValidationMethod[T]], batchSize: Option[Int] = None): Array[(ValidationResult, ValidationMethod[T])]

    Permalink

    use ValidationMethod to evaluate module on the given rdd dataset

    use ValidationMethod to evaluate module on the given rdd dataset

    dataset

    dataset for test

    vMethods

    validation methods

    batchSize

    total batchsize of all partitions, optional param and default 4 * partitionNum of dataset

    Definition Classes
    AbstractModule
  30. final def evaluateImage(imageFrame: ImageFrame, vMethods: Array[_ <: ValidationMethod[T]], batchSize: Option[Int] = None): Array[(ValidationResult, ValidationMethod[T])]

    Permalink

    use ValidationMethod to evaluate module on the given ImageFrame

    use ValidationMethod to evaluate module on the given ImageFrame

    imageFrame

    ImageFrame for valudation

    vMethods

    validation methods

    batchSize

    total batch size of all partitions

    Definition Classes
    AbstractModule
  31. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  32. def findDropouts(cell: Cell[T]): Array[Dropout[T]]

    Permalink
    Definition Classes
    Recurrent
  33. def findModules(moduleType: String): ArrayBuffer[AbstractModule[_, _, T]]

    Permalink
    Definition Classes
    Container
  34. final def forward(input: Tensor[T]): Tensor[T]

    Permalink

    Takes an input object, and computes the corresponding output of the module.

    Takes an input object, and computes the corresponding output of the module. After a forward, the output state variable should have been updated to the new value.

    input

    input data

    returns

    output data

    Definition Classes
    AbstractModule
  35. var forwardTime: Long

    Permalink
    Attributes
    protected
    Definition Classes
    AbstractModule
  36. def freeze(names: String*): RecurrentDecoder.this.type

    Permalink

    freeze the module, i.e.

    freeze the module, i.e. their parameters(weight/bias, if exists) are not changed in training process if names is not empty, set an array of layers that match the given names to be "freezed",

    names

    an array of layer names

    returns

    current graph model

    Definition Classes
    ContainerAbstractModule
  37. def getCell(): Cell[T]

    Permalink
    Definition Classes
    Recurrent
  38. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  39. def getExtraParameter(): Array[Tensor[T]]

    Permalink

    Get extra parameter in this module.

    Get extra parameter in this module. Extra parameter means the trainable parameters beside weight and bias. Such as runningMean and runningVar in BatchNormalization.

    The subclass should override this method if it has some parameters besides weight and bias.

    returns

    an array of tensor

    Definition Classes
    ContainerAbstractModule
  40. def getHiddenState(): Activity

    Permalink
    Definition Classes
    Recurrent
  41. final def getInputShape(): Shape

    Permalink

    Return the inputShape for the current Layer and the first dim is batch.

    Return the inputShape for the current Layer and the first dim is batch.

    Definition Classes
    InferShape
  42. final def getName(): String

    Permalink

    Get the module name, default name is className@namePostfix

    Get the module name, default name is className@namePostfix

    Definition Classes
    AbstractModule
  43. final def getNumericType(): TensorDataType

    Permalink

    Get numeric type of module parameters

    Get numeric type of module parameters

    Definition Classes
    AbstractModule
  44. final def getOutputShape(): Shape

    Permalink

    Return the outputShape for the current Layer and the first dim is batch.

    Return the outputShape for the current Layer and the first dim is batch.

    Definition Classes
    InferShape
  45. def getParametersTable(): Table

    Permalink

    This function returns a table contains ModuleName, the parameter names and parameter value in this module.

    This function returns a table contains ModuleName, the parameter names and parameter value in this module.

    The result table is a structure of Table(ModuleName -> Table(ParameterName -> ParameterValue)), and the type is Table[String, Table[String, Tensor[T]]].

    For example, get the weight of a module named conv1: table[Table]("conv1")[Tensor[T]]("weight").

    The names of the parameters follow such convention:

    1. If there's one parameter, the parameter is named as "weight", the gradient is named as "gradWeight"

    2. If there're two parameters, the first parameter is named as "weight", the first gradient is named as "gradWeight"; the second parameter is named as "bias", the seconcd gradient is named as "gradBias"

    3. If there're more parameters, the weight is named as "weight" with a seq number as suffix, the gradient is named as "gradient" with a seq number as suffix

    Custom modules should override this function the default impl if the convention doesn't meet the requirement.

    returns

    Table

    Definition Classes
    RecurrentDecoderContainerAbstractModule
  46. final def getPrintName(): String

    Permalink
    Attributes
    protected
    Definition Classes
    AbstractModule
  47. final def getScaleB(): Double

    Permalink

    Get the scale of gradientBias

    Get the scale of gradientBias

    Definition Classes
    AbstractModule
  48. final def getScaleW(): Double

    Permalink

    Get the scale of gradientWeight

    Get the scale of gradientWeight

    Definition Classes
    AbstractModule
  49. def getTimes(): Array[(AbstractModule[_ <: Activity, _ <: Activity, T], Long, Long)]

    Permalink

    Get the forward/backward cost time for the module or its submodules

    Get the forward/backward cost time for the module or its submodules

    Definition Classes
    RecurrentContainerAbstractModule
  50. final def getTimesGroupByModuleType(): Array[(String, Long, Long)]

    Permalink

    Get the forward/backward cost time for the module or its submodules and group by module type.

    Get the forward/backward cost time for the module or its submodules and group by module type.

    returns

    (module type name, forward time, backward time)

    Definition Classes
    AbstractModule
  51. final def getWeightsBias(): Array[Tensor[T]]

    Permalink

    Get weight and bias for the module

    Get weight and bias for the module

    returns

    array of weights and bias

    Definition Classes
    AbstractModule
  52. var gradHidden: Activity

    Permalink
    Attributes
    protected
    Definition Classes
    Recurrent
  53. var gradInput: Tensor[T]

    Permalink

    The cached gradient of activities.

    The cached gradient of activities. So we don't compute it again when need it

    Definition Classes
    AbstractModule
  54. val gradInput2Cell: Tensor[T]

    Permalink
    Attributes
    protected
    Definition Classes
    Recurrent
  55. final def hasName: Boolean

    Permalink

    Whether user set a name to the module before

    Whether user set a name to the module before

    Definition Classes
    AbstractModule
  56. def hashCode(): Int

    Permalink
    Definition Classes
    RecurrentDecoderRecurrentContainerAbstractModule → AnyRef → Any
  57. val hidDim: Int

    Permalink
    Attributes
    protected
    Definition Classes
    Recurrent
  58. var hidden: Activity

    Permalink
    Attributes
    protected
    Definition Classes
    Recurrent
  59. var hiddenShape: Array[Int]

    Permalink
    Attributes
    protected
    Definition Classes
    Recurrent
  60. def initHidden(sizes: Array[Int]): Unit

    Permalink

    Clone N models; N depends on the time dimension of the input

    Clone N models; N depends on the time dimension of the input

    Attributes
    protected
    Definition Classes
    Recurrent
  61. var initHiddenState: Activity

    Permalink
    Attributes
    protected
    Definition Classes
    Recurrent
  62. var input2Cell: Tensor[T]

    Permalink
    Attributes
    protected
    Definition Classes
    Recurrent
  63. val inputDim: Int

    Permalink
    Attributes
    protected
    Definition Classes
    Recurrent
  64. def inputs(first: (ModuleNode[T], Int), nodesWithIndex: (ModuleNode[T], Int)*): ModuleNode[T]

    Permalink

    Build graph: some other modules point to current module

    Build graph: some other modules point to current module

    first

    distinguish from another inputs when input parameter list is empty

    nodesWithIndex

    upstream module nodes and the output tensor index. The start index is 1.

    returns

    node containing current module

    Definition Classes
    AbstractModule
  65. def inputs(nodes: Array[ModuleNode[T]]): ModuleNode[T]

    Permalink

    Build graph: some other modules point to current module

    Build graph: some other modules point to current module

    nodes

    upstream module nodes in an array

    returns

    node containing current module

    Definition Classes
    AbstractModule
  66. def inputs(nodes: ModuleNode[T]*): ModuleNode[T]

    Permalink

    Build graph: some other modules point to current module

    Build graph: some other modules point to current module

    nodes

    upstream module nodes

    returns

    node containing current module

    Definition Classes
    AbstractModule
  67. var inputsFormats: Seq[Int]

    Permalink
    Attributes
    protected
    Definition Classes
    AbstractModule
  68. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  69. final def isTraining(): Boolean

    Permalink

    Check if the model is in training mode

    Check if the model is in training mode

    Definition Classes
    AbstractModule
  70. var line: String

    Permalink
    Attributes
    protected
    Definition Classes
    AbstractModule
  71. final def loadModelWeights(srcModel: Module[Float], matchAll: Boolean = true): RecurrentDecoder.this.type

    Permalink

    copy weights from another model, mapping by layer name

    copy weights from another model, mapping by layer name

    srcModel

    model to copy from

    matchAll

    whether to match all layers' weights and bias,

    returns

    current module

    Definition Classes
    AbstractModule
  72. final def loadWeights(weightPath: String, matchAll: Boolean = true): RecurrentDecoder.this.type

    Permalink

    load pretrained weights and bias to current module

    load pretrained weights and bias to current module

    weightPath

    file to store weights and bias

    matchAll

    whether to match all layers' weights and bias, if not, only load existing pretrained weights and bias

    returns

    current module

    Definition Classes
    AbstractModule
  73. var maskZero: Boolean

    Permalink
    Definition Classes
    Recurrent
  74. val modules: ArrayBuffer[AbstractModule[Activity, Activity, T]]

    Permalink
    Definition Classes
    Container
  75. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  76. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  77. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  78. var output: Tensor[T]

    Permalink

    The cached output.

    The cached output. So we don't compute it again when need it

    Definition Classes
    AbstractModule
  79. var outputsFormats: Seq[Int]

    Permalink
    Attributes
    protected
    Definition Classes
    AbstractModule
  80. def parameters(): (Array[Tensor[T]], Array[Tensor[T]])

    Permalink

    This function returns two arrays.

    This function returns two arrays. One for the weights and the other the gradients Custom modules should override this function if they have parameters

    returns

    (Array of weights, Array of grad)

    Definition Classes
    RecurrentDecoderContainerAbstractModule
  81. var preTopology: AbstractModule[Activity, Activity, T]

    Permalink
    Attributes
    protected
    Definition Classes
    Recurrent
  82. final def predict(dataset: RDD[Sample[T]], batchSize: Int = 1, shareBuffer: Boolean = false): RDD[Activity]

    Permalink

    module predict, return the probability distribution

    module predict, return the probability distribution

    dataset

    dataset for prediction

    batchSize

    total batchSize for all partitions. if -1, default is 4 * partitionNumber of datatset

    shareBuffer

    whether to share same memory for each batch predict results

    Definition Classes
    AbstractModule
  83. final def predictClass(dataset: RDD[Sample[T]], batchSize: Int = 1): RDD[Int]

    Permalink

    module predict, return the predict label

    module predict, return the predict label

    dataset

    dataset for prediction

    batchSize

    total batchSize for all partitions. if -1, default is 4 * partitionNumber of dataset

    Definition Classes
    AbstractModule
  84. final def predictImage(imageFrame: ImageFrame, outputLayer: String = null, shareBuffer: Boolean = false, batchPerPartition: Int = 4, predictKey: String = ImageFeature.predict, featurePaddingParam: Option[PaddingParam[T]] = None): ImageFrame

    Permalink

    model predict images, return imageFrame with predicted tensor, if you want to call predictImage multiple times, it is recommended to use Predictor for DistributedImageFrame or LocalPredictor for LocalImageFrame

    model predict images, return imageFrame with predicted tensor, if you want to call predictImage multiple times, it is recommended to use Predictor for DistributedImageFrame or LocalPredictor for LocalImageFrame

    imageFrame

    imageFrame that contains images

    outputLayer

    if outputLayer is not null, the output of layer that matches outputLayer will be used as predicted output

    shareBuffer

    whether to share same memory for each batch predict results

    batchPerPartition

    batch size per partition, default is 4

    predictKey

    key to store predicted result

    featurePaddingParam

    featurePaddingParam if the inputs have variant size

    Definition Classes
    AbstractModule
  85. def processInputs(first: (ModuleNode[T], Int), nodesWithIndex: (ModuleNode[T], Int)*): ModuleNode[T]

    Permalink
    Attributes
    protected
    Definition Classes
    AbstractModule
  86. def processInputs(nodes: Seq[ModuleNode[T]]): ModuleNode[T]

    Permalink
    Attributes
    protected
    Definition Classes
    AbstractModule
  87. final def quantize(): Module[T]

    Permalink

    Quantize this module, which reduces the precision of the parameter.

    Quantize this module, which reduces the precision of the parameter. Get a higher speed with a little accuracy cost.

    Definition Classes
    AbstractModule
  88. def release(): Unit

    Permalink

    if the model contains native resources such as aligned memory, we should release it by manual.

    if the model contains native resources such as aligned memory, we should release it by manual. JVM GC can't release them reliably.

    Definition Classes
    ContainerAbstractModule
  89. def reset(): Unit

    Permalink

    Reset module parameters, which is re-initialize the parameter with given initMethod

    Reset module parameters, which is re-initialize the parameter with given initMethod

    Definition Classes
    RecurrentContainerAbstractModule
  90. def resetTimes(): Unit

    Permalink

    Reset the forward/backward record time for the module or its submodules

    Reset the forward/backward record time for the module or its submodules

    Definition Classes
    RecurrentContainerAbstractModule
  91. final def saveCaffe(prototxtPath: String, modelPath: String, useV2: Boolean = true, overwrite: Boolean = false): RecurrentDecoder.this.type

    Permalink

    Save this module to path in caffe readable format

    Save this module to path in caffe readable format

    Definition Classes
    AbstractModule
  92. final def saveDefinition(path: String, overWrite: Boolean = false): RecurrentDecoder.this.type

    Permalink

    Save this module definition to path.

    Save this module definition to path.

    path

    path to save module, local file system, HDFS and Amazon S3 is supported. HDFS path should be like "hdfs://[host]:[port]/xxx" Amazon S3 path should be like "s3a://bucket/xxx"

    overWrite

    if overwrite

    returns

    self

    Definition Classes
    AbstractModule
  93. final def saveModule(path: String, weightPath: String = null, overWrite: Boolean = false): RecurrentDecoder.this.type

    Permalink

    Save this module to path with protobuf format

    Save this module to path with protobuf format

    path

    path to save module, local file system, HDFS and Amazon S3 is supported. HDFS path should be like "hdfs://[host]:[port]/xxx" Amazon S3 path should be like "s3a://bucket/xxx"

    weightPath

    where to store weight

    overWrite

    if overwrite

    returns

    self

    Definition Classes
    AbstractModule
  94. final def saveTF(inputs: Seq[(String, Seq[Int])], path: String, byteOrder: ByteOrder = ByteOrder.LITTLE_ENDIAN, dataFormat: TensorflowDataFormat = TensorflowDataFormat.NHWC): RecurrentDecoder.this.type

    Permalink

    Save this module to path in tensorflow readable format

    Save this module to path in tensorflow readable format

    Definition Classes
    AbstractModule
  95. final def saveTorch(path: String, overWrite: Boolean = false): RecurrentDecoder.this.type

    Permalink

    Save this module to path in torch7 readable format

    Save this module to path in torch7 readable format

    Definition Classes
    AbstractModule
  96. final def saveWeights(path: String, overWrite: Boolean): Unit

    Permalink

    save weights and bias to file

    save weights and bias to file

    path

    file to save

    overWrite

    whether to overwrite or not

    Definition Classes
    AbstractModule
  97. var scaleB: Double

    Permalink
    Attributes
    protected
    Definition Classes
    AbstractModule
  98. var scaleW: Double

    Permalink

    The scale of gradient weight and gradient bias before gradParameters being accumulated.

    The scale of gradient weight and gradient bias before gradParameters being accumulated.

    Attributes
    protected
    Definition Classes
    AbstractModule
  99. val seqLength: Int

    Permalink

    sequence length of the output

  100. def setExtraParameter(extraParam: Array[Tensor[T]]): RecurrentDecoder.this.type

    Permalink

    Set extra parameter to this module.

    Set extra parameter to this module. Extra parameter means the trainable parameters beside weight and bias. Such as runningMean and runningVar in BatchNormalization.

    returns

    this

    Definition Classes
    AbstractModule
  101. def setHiddenState(hiddenState: Activity): Unit

    Permalink
    Definition Classes
    Recurrent
  102. def setInputFormats(formats: Seq[Int]): RecurrentDecoder.this.type

    Permalink

    set input formats for graph

    set input formats for graph

    Definition Classes
    AbstractModule
  103. final def setLine(line: String): RecurrentDecoder.this.type

    Permalink

    Set the line separator when print the module

    Set the line separator when print the module

    Definition Classes
    AbstractModule
  104. final def setName(name: String): RecurrentDecoder.this.type

    Permalink

    Set the module name

    Set the module name

    Definition Classes
    AbstractModule
  105. def setOutputFormats(formats: Seq[Int]): RecurrentDecoder.this.type

    Permalink

    set output formats for graph

    set output formats for graph

    Definition Classes
    AbstractModule
  106. def setScaleB(b: Double): RecurrentDecoder.this.type

    Permalink

    Set the scale of gradientBias

    Set the scale of gradientBias

    b

    the value of the scale of gradientBias

    returns

    this

    Definition Classes
    ContainerAbstractModule
  107. def setScaleW(w: Double): RecurrentDecoder.this.type

    Permalink

    Set the scale of gradientWeight

    Set the scale of gradientWeight

    w

    the value of the scale of gradientWeight

    returns

    this

    Definition Classes
    ContainerAbstractModule
  108. final def setWeightsBias(newWeights: Array[Tensor[T]]): RecurrentDecoder.this.type

    Permalink

    Set weight and bias for the module

    Set weight and bias for the module

    newWeights

    array of weights and bias

    Definition Classes
    AbstractModule
  109. def share(cells: ArrayBuffer[Cell[T]]): Unit

    Permalink

    Sharing weights, bias, gradWeights across all the cells in time dim

    Sharing weights, bias, gradWeights across all the cells in time dim

    Definition Classes
    Recurrent
  110. val stepGradBuffer: Tensor[T]

    Permalink
    Attributes
    protected
    Definition Classes
    Recurrent
  111. val stepInput2CellBuf: Tensor[T]

    Permalink
    Attributes
    protected
    Definition Classes
    Recurrent
  112. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  113. val timeDim: Int

    Permalink
    Attributes
    protected
    Definition Classes
    Recurrent
  114. var times: Int

    Permalink
    Attributes
    protected
    Definition Classes
    Recurrent
  115. def toGraph(startNodes: ModuleNode[T]*): Graph[T]

    Permalink

    Generate graph module with start nodes

    Generate graph module with start nodes

    Definition Classes
    AbstractModule
  116. def toString(): String

    Permalink
    Definition Classes
    RecurrentAbstractModule → AnyRef → Any
  117. var topology: Cell[T]

    Permalink
    Attributes
    protected
    Definition Classes
    Recurrent
  118. var train: Boolean

    Permalink

    Module status.

    Module status. It is useful for modules like dropout/batch normalization

    Attributes
    protected
    Definition Classes
    AbstractModule
  119. final def training(): RecurrentDecoder.this.type

    Permalink

    Set the module to training mode

    Set the module to training mode

    Definition Classes
    ContainerAbstractModule
  120. def unFreeze(names: String*): RecurrentDecoder.this.type

    Permalink

    "unfreeze" module, i.e.

    "unfreeze" module, i.e. make the module parameters(weight/bias, if exists) to be trained(updated) in training process if names is not empty, unfreeze layers that match given names

    names

    array of module names to unFreeze

    Definition Classes
    ContainerAbstractModule
  121. def updateGradInput(input: Tensor[T], gradOutput: Tensor[T]): Tensor[T]

    Permalink

    Computing the gradient of the module with respect to its own input.

    Computing the gradient of the module with respect to its own input. This is returned in gradInput. Also, the gradInput state variable is updated accordingly.

    Definition Classes
    RecurrentDecoderRecurrentAbstractModule
  122. def updateOutput(input: Tensor[T]): Tensor[T]

    Permalink

    Computes the output using the current parameter set of the class and input.

    Computes the output using the current parameter set of the class and input. This function returns the result which is stored in the output field.

    Definition Classes
    RecurrentDecoderRecurrentAbstractModule
  123. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  124. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  125. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  126. def zeroGradParameters(): Unit

    Permalink

    If the module has parameters, this will zero the accumulation of the gradients with respect to these parameters.

    If the module has parameters, this will zero the accumulation of the gradients with respect to these parameters. Otherwise, it does nothing.

    Definition Classes
    AbstractModule

Deprecated Value Members

  1. def save(path: String, overWrite: Boolean = false): RecurrentDecoder.this.type

    Permalink

    Save this module to path.

    Save this module to path.

    path

    path to save module, local file system, HDFS and Amazon S3 is supported. HDFS path should be like "hdfs://[host]:[port]/xxx" Amazon S3 path should be like "s3a://bucket/xxx"

    overWrite

    if overwrite

    returns

    self

    Definition Classes
    AbstractModule
    Annotations
    @deprecated
    Deprecated

    (Since version 0.3.0) please use recommended saveModule(path, overWrite)

Inherited from Recurrent[T]

Inherited from DynamicContainer[Tensor[T], Tensor[T], T]

Inherited from Container[Tensor[T], Tensor[T], T]

Inherited from AbstractModule[Tensor[T], Tensor[T], T]

Inherited from InferShape

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped