Class/Object

com.intel.analytics.bigdl.nn

SoftmaxWithCriterion

Related Docs: object SoftmaxWithCriterion | package nn

Permalink

class SoftmaxWithCriterion[T] extends TensorCriterion[T]

Computes the multinomial logistic loss for a one-of-many classification task, passing real-valued predictions through a softmax to get a probability distribution over classes. It should be preferred over separate SoftmaxLayer + MultinomialLogisticLossLayer as its gradient computation is more numerically stable.

Linear Supertypes
TensorCriterion[T], AbstractCriterion[Tensor[T], Tensor[T], T], Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. SoftmaxWithCriterion
  2. TensorCriterion
  3. AbstractCriterion
  4. Serializable
  5. Serializable
  6. AnyRef
  7. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new SoftmaxWithCriterion(ignoreLabel: Option[Int] = None, normalizeMode: NormMode = NormMode.VALID)(implicit arg0: ClassTag[T], ev: TensorNumeric[T])

    Permalink

    ignoreLabel

    (optional) Specify a label value that should be ignored when computing the loss.

    normalizeMode

    How to normalize the output loss.

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  5. def backward(input: Tensor[T], target: Tensor[T]): Tensor[T]

    Permalink

    Performs a back-propagation step through the criterion, with respect to the given input.

    Performs a back-propagation step through the criterion, with respect to the given input.

    input

    input data

    target

    target

    returns

    gradient corresponding to input data

    Definition Classes
    AbstractCriterion
  6. def canEqual(other: Any): Boolean

    Permalink
    Definition Classes
    AbstractCriterion
  7. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  8. def cloneCriterion(): AbstractCriterion[Tensor[T], Tensor[T], T]

    Permalink

    Deep copy this criterion

    Deep copy this criterion

    returns

    a deep copied criterion

    Definition Classes
    AbstractCriterion
  9. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  10. def equals(other: Any): Boolean

    Permalink
    Definition Classes
    AbstractCriterion → AnyRef → Any
  11. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  12. def forward(input: Tensor[T], target: Tensor[T]): T

    Permalink

    Takes an input object, and computes the corresponding loss of the criterion, compared with target.

    Takes an input object, and computes the corresponding loss of the criterion, compared with target.

    input

    input data

    target

    target

    returns

    the loss of criterion

    Definition Classes
    AbstractCriterion
  13. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  14. def getNormalizer(normalizeMode: NormMode, validCount: Int): T

    Permalink

    Read the normalization mode parameter and compute the normalizer based on the input size.

    Read the normalization mode parameter and compute the normalizer based on the input size. If normalizeMode is VALID, the count of valid outputs will be read from validCount, unless it is -1 in which case all outputs are assumed to be valid.

  15. var gradInput: Tensor[T]

    Permalink
    Definition Classes
    AbstractCriterion
  16. def hashCode(): Int

    Permalink
    Definition Classes
    AbstractCriterion → AnyRef → Any
  17. var innerNum: Int

    Permalink
  18. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  19. var nClasses: Int

    Permalink
  20. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  21. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  22. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  23. var outerNum: Int

    Permalink
  24. var output: T

    Permalink
    Definition Classes
    AbstractCriterion
  25. var prob: Tensor[T]

    Permalink
  26. var softmax: SoftMax[T]

    Permalink
  27. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  28. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  29. def updateGradInput(input: Tensor[T], target: Tensor[T]): Tensor[T]

    Permalink

    Computing the gradient of the criterion with respect to its own input.

    Computing the gradient of the criterion with respect to its own input. This is returned in gradInput. Also, the gradInput state variable is updated accordingly.

    input

    input data

    target

    target data / labels

    returns

    gradient of input

    Definition Classes
    SoftmaxWithCriterionAbstractCriterion
  30. def updateOutput(input: Tensor[T], target: Tensor[T]): T

    Permalink

    compute the loss

    compute the loss

    input

    input.size(1) is batch num input.size(2) is the softmaxAxis, number of classes as usual

    target

    target or labels

    Definition Classes
    SoftmaxWithCriterionAbstractCriterion
  31. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  32. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  33. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from TensorCriterion[T]

Inherited from AbstractCriterion[Tensor[T], Tensor[T], T]

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped