Class

com.intel.analytics.bigdl.optim

Adagrad

Related Doc: package optim

Permalink

class Adagrad[T] extends OptimMethod[T]

An implementation of Adagrad. See the original paper: http://jmlr.org/papers/volume12/duchi11a/duchi11a.pdf

Linear Supertypes
OptimMethod[T], Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. Adagrad
  2. OptimMethod
  3. Serializable
  4. Serializable
  5. AnyRef
  6. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new Adagrad(learningRate: Double = 1e-3, learningRateDecay: Double = 0.0, weightDecay: Double = 0.0)(implicit arg0: ClassTag[T], ev: TensorNumeric[T])

    Permalink

    learningRate

    learning rate

    learningRateDecay

    learning rate decay

    weightDecay

    weight decay

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  5. def clearHistory(): Unit

    Permalink

    Clear the history information in the OptimMethod state

    Clear the history information in the OptimMethod state

    Definition Classes
    AdagradOptimMethod
  6. def clone(): OptimMethod[T]

    Permalink

    clone OptimMethod

    clone OptimMethod

    Definition Classes
    OptimMethod → AnyRef
  7. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  8. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  9. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  10. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  11. def getHyperParameter(): String

    Permalink

    Get hyper parameter from config table.

    Get hyper parameter from config table.

    Definition Classes
    OptimMethod
  12. def getLearningRate(): Double

    Permalink

    get learning rate

    get learning rate

    Definition Classes
    AdagradOptimMethod
  13. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  14. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  15. var learningRate: Double

    Permalink

    learning rate

  16. var learningRateDecay: Double

    Permalink

    learning rate decay

  17. def loadFromTable(config: Table): Adagrad.this.type

    Permalink

    load optimMethod parameters from Table

    load optimMethod parameters from Table

    Definition Classes
    AdagradOptimMethod
  18. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  19. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  20. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  21. def optimize(feval: (Tensor[T]) ⇒ (T, Tensor[T]), parameter: Tensor[T]): (Tensor[T], Array[T])

    Permalink

    Adagrad implementation for Adagrad

    Adagrad implementation for Adagrad

    feval

    a function that takes a single input (X), the point of a evaluation, and returns f(X) and df/dX

    parameter

    the initial point

    returns

    the new x vector and the function list, evaluated before the update

    Definition Classes
    AdagradOptimMethod
  22. def save(path: String, overWrite: Boolean = false): Adagrad.this.type

    Permalink

    save OptimMethod

    save OptimMethod

    path

    path

    overWrite

    whether to overwrite

    Definition Classes
    OptimMethod
  23. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  24. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  25. def updateHyperParameter(): Unit

    Permalink

    Update hyper parameter.

    Update hyper parameter. We have updated hyper parameter in method optimize(). But in DistriOptimizer, the method optimize() is only called on the executor side, the driver's hyper parameter is unchanged. So this method is using to update hyper parameter on the driver side.

    returns

    A string.

    Definition Classes
    OptimMethod
  26. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  27. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  28. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  29. var weightDecay: Double

    Permalink

    weight decay

Deprecated Value Members

  1. def clearHistory(state: Table): Table

    Permalink

    Clear the history information in the state

    Clear the history information in the state

    Definition Classes
    OptimMethod
    Annotations
    @deprecated
    Deprecated

    (Since version 0.2.0) Please use clearHistory() instead

  2. def getHyperParameter(config: Table): String

    Permalink

    Get hyper parameter from config table.

    Get hyper parameter from config table.

    config

    a table contains the hyper parameter.

    Definition Classes
    OptimMethod
    Annotations
    @deprecated
    Deprecated

    (Since version 0.2.0) Please use getHyperParameter() instead

  3. def optimize(feval: (Tensor[T]) ⇒ (T, Tensor[T]), parameter: Tensor[T], config: Table, state: Table = null): (Tensor[T], Array[T])

    Permalink

    Optimize the model parameter

    Optimize the model parameter

    feval

    a function that takes a single input (X), the point of a evaluation, and returns f(X) and df/dX

    parameter

    the initial point

    config

    a table with configuration parameters for the optimizer

    state

    a table describing the state of the optimizer; after each call the state is modified

    returns

    the new x vector and the function list, evaluated before the update

    Definition Classes
    OptimMethod
    Annotations
    @deprecated
    Deprecated

    (Since version 0.2.0) Please initialize OptimMethod with parameters when creating it instead of importing table

  4. def updateHyperParameter(config: Table, state: Table): Unit

    Permalink

    Update hyper parameter.

    Update hyper parameter. We have updated hyper parameter in method optimize(). But in DistriOptimizer, the method optimize() is only called on the executor side, the driver's hyper parameter is unchanged. So this method is using to update hyper parameter on the driver side.

    config

    config table.

    state

    state Table.

    returns

    A string.

    Definition Classes
    OptimMethod
    Annotations
    @deprecated
    Deprecated

    (Since version 0.2.0) Please use updateHyperParameter() instead

Inherited from OptimMethod[T]

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped