Class/Object

com.intel.analytics.bigdl.optim

DistriOptimizer

Related Docs: object DistriOptimizer | package optim

Permalink

class DistriOptimizer[T] extends Optimizer[T, MiniBatch[T]]

The optimizer run on a distributed cluster.

Linear Supertypes
Optimizer[T, MiniBatch[T]], AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. DistriOptimizer
  2. Optimizer
  3. AnyRef
  4. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new DistriOptimizer(_model: Module[T], _dataset: DistributedDataSet[MiniBatch[T]], _criterion: Criterion[T])(implicit arg0: ClassTag[T], ev: TensorNumeric[T])

    Permalink

    _model

    train model

    _dataset

    train dataset

    _criterion

    loss function

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  5. var checkSingleton: Boolean

    Permalink
    Attributes
    protected
    Definition Classes
    Optimizer
  6. var checkpointPath: Option[String]

    Permalink
    Attributes
    protected
    Definition Classes
    Optimizer
  7. var checkpointTrigger: Option[Trigger]

    Permalink
    Attributes
    protected
    Definition Classes
    Optimizer
  8. def clearState(): Unit

    Permalink

    Clean some internal states, so this or other optimizers can run optimize again

    Clean some internal states, so this or other optimizers can run optimize again

    This method will be called at the end of optimize. You need not call it if optimize succeed. If the optimize fails, you may call it before next optimize.

  9. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  10. var compress: String

    Permalink
  11. var computeThresholdbatchSize: Int

    Permalink
    Attributes
    protected
    Definition Classes
    Optimizer
  12. var criterion: Criterion[T]

    Permalink

    the criterion used to evaluate the loss of the model given an input

    the criterion used to evaluate the loss of the model given an input

    Attributes
    protected
    Definition Classes
    Optimizer
  13. var dataset: DataSet[MiniBatch[T]]

    Permalink

    the data set used to train a model

    the data set used to train a model

    Attributes
    protected
    Definition Classes
    Optimizer
  14. def disableGradientClipping(): DistriOptimizer.this.type

    Permalink

    Disable gradient clipping

    Disable gradient clipping

    Definition Classes
    Optimizer
  15. var dropPercentage: Double

    Permalink
    Attributes
    protected
    Definition Classes
    Optimizer
  16. var endWhen: Trigger

    Permalink
    Attributes
    protected
    Definition Classes
    Optimizer
  17. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  18. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  19. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  20. def getCheckpointPath(): Option[String]

    Permalink

    Get the directory of saving checkpoint

    Get the directory of saving checkpoint

    Definition Classes
    Optimizer
  21. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  22. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  23. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  24. var isOverWrite: Boolean

    Permalink
    Attributes
    protected
    Definition Classes
    Optimizer
  25. var maxDropPercentage: Double

    Permalink
    Attributes
    protected
    Definition Classes
    Optimizer
  26. val metrics: Metrics

    Permalink
  27. var model: Module[T]

    Permalink

    the model to be trained

    the model to be trained

    Attributes
    protected
    Definition Classes
    Optimizer
  28. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  29. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  30. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  31. var optimMethods: Map[String, OptimMethod[T]]

    Permalink
    Attributes
    protected
    Definition Classes
    Optimizer
  32. def optimize(): Module[T]

    Permalink

    Trigger the optimization process

    Trigger the optimization process

    returns

    the model to be trained

    Definition Classes
    DistriOptimizerOptimizer
  33. def overWriteCheckpoint(): DistriOptimizer.this.type

    Permalink

    Enable overwrite saving checkpoint

    Enable overwrite saving checkpoint

    Definition Classes
    Optimizer
  34. var parameterProcessors: ArrayBuffer[ParameterProcessor]

    Permalink

    a list of ParameterProcessor, orders matter

    a list of ParameterProcessor, orders matter

    Attributes
    protected
    Definition Classes
    Optimizer
  35. def prepareInput(): Unit

    Permalink
    Definition Classes
    DistriOptimizerOptimizer
  36. def reserveOptim(reserve: Boolean): DistriOptimizer.this.type

    Permalink

    If you want to reserve optimMethod for each worker and reuse those methods in next training task, please set reserve = true Otherwise, if just using optimMethod you set in optimizer, please set reserve = false

    If you want to reserve optimMethod for each worker and reuse those methods in next training task, please set reserve = true Otherwise, if just using optimMethod you set in optimizer, please set reserve = false

    reserve

    whether to reserve optim method for each worker

    Definition Classes
    DistriOptimizerOptimizer
  37. def setCheckpoint(path: String, trigger: Trigger): DistriOptimizer.this.type

    Permalink

    Set a check point saved at path triggered by trigger

    Set a check point saved at path triggered by trigger

    path

    the directory to save

    trigger

    how often to save the check point

    returns

    the optimizer

    Definition Classes
    Optimizer
  38. def setCompressType(compressType: String): DistriOptimizer.this.type

    Permalink
  39. def setConstantGradientClipping(min: Double, max: Double): DistriOptimizer.this.type

    Permalink

    Set constant gradient clipping

    Set constant gradient clipping

    min

    the minimum value to clip by

    max

    the maximum value to clip by

    Definition Classes
    Optimizer
  40. def setCriterion(newCriterion: Criterion[T]): DistriOptimizer.this.type

    Permalink

    Set a new criterion to the optimizer

    Set a new criterion to the optimizer

    newCriterion

    new criterion

    Definition Classes
    Optimizer
  41. def setDropModuleProperty(dropPercentage: Double, maxDropPercentage: Double, batchsize: Int = 100, warmupIteration: Int = 200): DistriOptimizer.this.type

    Permalink

    Set dropping a certain percentage (dropPercentage) of models during distributed training to accelerate, because some cached model may take too long.

    Set dropping a certain percentage (dropPercentage) of models during distributed training to accelerate, because some cached model may take too long.

    dropPercentage

    drop percentage

    maxDropPercentage

    max drop percentage

    batchsize

    batch size

    warmupIteration

    how may iteration to warm up

    returns

    this optimizer

    Definition Classes
    Optimizer
  42. def setEndWhen(endWhen: Trigger): DistriOptimizer.this.type

    Permalink

    When to stop, passed in a Trigger

    When to stop, passed in a Trigger

    endWhen

    when to end

    returns

    the optimizer

    Definition Classes
    Optimizer
  43. def setGradientClippingByl2Norm(l2NormThreshold: Double): DistriOptimizer.this.type

    Permalink

    Clip gradient to a maximum L2-norm

    Clip gradient to a maximum L2-norm

    l2NormThreshold

    gradient L2-Norm threshold

    Definition Classes
    Optimizer
  44. def setModel(newModel: Module[T]): DistriOptimizer.this.type

    Permalink

    Set a model to the optimizer.

    Set a model to the optimizer. Notice: if current optimMethod in this optimizer is not a global optimMethod, this setModel will throw an exception. You should use setModelAndOptimMethods instead.

    newModel

    new model

    Definition Classes
    Optimizer
  45. def setModelAndOptimMethods(newModel: Module[T], newOptimMethods: Map[String, OptimMethod[T]]): DistriOptimizer.this.type

    Permalink

    Set new model and new optimMethods to the optimizer.

    Set new model and new optimMethods to the optimizer.

    newModel

    new model

    newOptimMethods

    new optimMethods

    Definition Classes
    Optimizer
  46. def setOptimMethod(method: OptimMethod[T]): DistriOptimizer.this.type

    Permalink

    Set an optimization method

    Set an optimization method

    method

    optimization method

    Definition Classes
    Optimizer
  47. def setOptimMethods(method: Map[String, OptimMethod[T]]): DistriOptimizer.this.type

    Permalink

    Set optimization methods for each submodule.

    Set optimization methods for each submodule.

    method

    A mapping of submodule -> OptimMethod

    Definition Classes
    Optimizer
  48. def setState(state: Table): DistriOptimizer.this.type

    Permalink

    Set a state(learning rate, epochs...) to the optimizer

    Set a state(learning rate, epochs...) to the optimizer

    state

    the state to be saved

    Definition Classes
    Optimizer
  49. def setTrainData(sampleRDD: RDD[Sample[T]], batchSize: Int, featurePaddingParam: PaddingParam[T] = null, labelPaddingParam: PaddingParam[T] = null): DistriOptimizer.this.type

    Permalink

    Set new train dataset.

    Set new train dataset.

    sampleRDD

    training Samples

    batchSize

    mini batch size

    featurePaddingParam

    feature padding strategy, see com.intel.analytics.bigdl.dataset.PaddingParam for details.

    labelPaddingParam

    label padding strategy, see com.intel.analytics.bigdl.dataset.PaddingParam for details.

    returns

    the optimizer

    Definition Classes
    DistriOptimizerOptimizer
  50. def setTrainData(sampleRDD: RDD[Sample[T]], batchSize: Int, miniBatch: MiniBatch[T]): DistriOptimizer.this.type

    Permalink

    Set new train dataset.

    Set new train dataset. User can supply a customized implementation of trait MiniBatch to define how data is organized and retrieved in a mini batch.

    sampleRDD

    training Samples

    batchSize

    mini batch size

    returns

    the Optimizer

    Definition Classes
    DistriOptimizerOptimizer
  51. def setTrainSummary(trainSummary: TrainSummary): DistriOptimizer.this.type

    Permalink

    Enable train summary.

    Enable train summary.

    Definition Classes
    Optimizer
  52. def setValidation(trigger: Trigger, sampleRDD: RDD[Sample[T]], vMethods: Array[ValidationMethod[T]], batchSize: Int, miniBatch: MiniBatch[T]): DistriOptimizer.this.type

    Permalink

    Set validate evaluation

    Set validate evaluation

    trigger

    how often to evaluation validation set

    sampleRDD

    validate data set in type of RDD of Sample

    vMethods

    a set of validation method ValidationMethod

    batchSize

    batch size

    miniBatch

    construct MiniBatch with a specified miniBatch type

    Definition Classes
    Optimizer
  53. def setValidation(trigger: Trigger, sampleRDD: RDD[Sample[T]], vMethods: Array[ValidationMethod[T]], batchSize: Int): DistriOptimizer.this.type

    Permalink

    Set a validate evaluation

    Set a validate evaluation

    trigger

    how often to evaluation validation set

    sampleRDD

    validate data set in type of RDD of Sample

    vMethods

    a set of validation method ValidationMethod

    batchSize

    batch size

    returns

    this optimizer

    Definition Classes
    Optimizer
  54. def setValidation(trigger: Trigger, sampleRDD: RDD[Sample[T]], vMethods: Array[ValidationMethod[T]], batchSize: Int, featurePaddingParam: PaddingParam[T], labelPaddingParam: PaddingParam[T]): DistriOptimizer.this.type

    Permalink

    Set a validate evaluation

    Set a validate evaluation

    trigger

    how often to evaluation validation set

    sampleRDD

    validate data set in type of RDD of Sample

    vMethods

    a set of validation method ValidationMethod

    batchSize

    batch size

    featurePaddingParam

    feature padding strategy, see com.intel.analytics.bigdl.dataset.PaddingParam for details.

    labelPaddingParam

    label padding strategy, see com.intel.analytics.bigdl.dataset.PaddingParam for details.

    returns

    this optimizer

    Definition Classes
    Optimizer
  55. def setValidation(trigger: Trigger, dataset: DataSet[MiniBatch[T]], vMethods: Array[ValidationMethod[T]]): DistriOptimizer.this.type

    Permalink

    Set a validate evaluation

    Set a validate evaluation

    trigger

    how often to evaluation validation set

    dataset

    validate data set in type of DataSet of MiniBatch

    vMethods

    a set of validation method ValidationMethod

    returns

    this optimizer

    Definition Classes
    Optimizer
  56. def setValidationSummary(validationSummary: ValidationSummary): DistriOptimizer.this.type

    Permalink

    Enable validation summary.

    Enable validation summary.

    Definition Classes
    Optimizer
  57. var state: Table

    Permalink
    Attributes
    protected
    Definition Classes
    Optimizer
  58. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  59. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  60. var trainSummary: Option[TrainSummary]

    Permalink
    Attributes
    protected
    Definition Classes
    Optimizer
  61. var validationDataSet: Option[DataSet[MiniBatch[T]]]

    Permalink
    Attributes
    protected
    Definition Classes
    Optimizer
  62. var validationMethods: Option[Array[ValidationMethod[T]]]

    Permalink
    Attributes
    protected
    Definition Classes
    Optimizer
  63. var validationSummary: Option[ValidationSummary]

    Permalink
    Attributes
    protected
    Definition Classes
    Optimizer
  64. var validationTrigger: Option[Trigger]

    Permalink
    Attributes
    protected
    Definition Classes
    Optimizer
  65. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  66. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  67. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  68. var warmupIterationNum: Int

    Permalink
    Attributes
    protected
    Definition Classes
    Optimizer

Deprecated Value Members

  1. def disableCheckSingleton(): DistriOptimizer.this.type

    Permalink

    make optimizer not check the singleton model on a node

    make optimizer not check the singleton model on a node

    Definition Classes
    Optimizer
    Annotations
    @deprecated
    Deprecated

    (Since version 0.1.0) Use bigdl.check.singleton instead

Inherited from Optimizer[T, MiniBatch[T]]

Inherited from AnyRef

Inherited from Any

Ungrouped