learning rate
double, must be less or equal to zero. Default is -0.5.
double, the starting value for accumulators, require zero or positive values. Default is 0.1.
double, must be greater or equal to zero. Default is zero.
double, must be greater or equal to zero. Default is zero.
double, must be greater or equal to zero. Default is zero. This differs from l2RegularizationStrength above. L2 above is a stabilization penalty, whereas this one is a magnitude penalty.
Clear the history information in the OptimMethod state
Clear the history information in the OptimMethod state
clone OptimMethod
clone OptimMethod
Get hyper parameter from config table.
Get hyper parameter from config table.
get learning rate
get learning rate
double, the starting value for accumulators, require zero or positive values.
double, the starting value for accumulators, require zero or positive values. Default is 0.1.
double, must be greater or equal to zero.
double, must be greater or equal to zero. Default is zero.
double, must be greater or equal to zero.
double, must be greater or equal to zero. Default is zero.
double, must be greater or equal to zero.
double, must be greater or equal to zero. Default is zero. This differs from l2RegularizationStrength above. L2 above is a stabilization penalty, whereas this one is a magnitude penalty.
learning rate
double, must be less or equal to zero.
double, must be less or equal to zero. Default is -0.5.
load optimMethod parameters from Table
load optimMethod parameters from Table
Optimize the model parameter
Optimize the model parameter
a function that takes a single input (X), the point of a evaluation, and returns f(X) and df/dX
the initial point
the new x vector and the function list, evaluated before the update
save OptimMethod
Update hyper parameter.
Update hyper parameter. We have updated hyper parameter in method optimize(). But in DistriOptimizer, the method optimize() is only called on the executor side, the driver's hyper parameter is unchanged. So this method is using to update hyper parameter on the driver side.
A string.
Clear the history information in the state
Clear the history information in the state
(Since version 0.2.0) Please use clearHistory() instead
Get hyper parameter from config table.
Get hyper parameter from config table.
a table contains the hyper parameter.
(Since version 0.2.0) Please use getHyperParameter() instead
Optimize the model parameter
Optimize the model parameter
a function that takes a single input (X), the point of a evaluation, and returns f(X) and df/dX
the initial point
a table with configuration parameters for the optimizer
a table describing the state of the optimizer; after each call the state is modified
the new x vector and the function list, evaluated before the update
(Since version 0.2.0) Please initialize OptimMethod with parameters when creating it instead of importing table
Update hyper parameter.
Update hyper parameter. We have updated hyper parameter in method optimize(). But in DistriOptimizer, the method optimize() is only called on the executor side, the driver's hyper parameter is unchanged. So this method is using to update hyper parameter on the driver side.
config table.
state Table.
A string.
(Since version 0.2.0) Please use updateHyperParameter() instead
An implementation of Ftrl https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf. Support L1 penalty, L2 penalty and shrinkage-type L2 penalty.