Object/Class

com.intel.analytics.bigdl.optim

LarsSGD

Related Docs: class LarsSGD | package optim

Permalink

object LarsSGD extends Serializable

Linear Supertypes
Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. LarsSGD
  2. Serializable
  3. Serializable
  4. AnyRef
  5. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  5. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  6. def containsLarsSGD[T](optimMethods: Map[String, OptimMethod[T]]): Option[Double]

    Permalink

    Check if there is LarsSGD in optimMethods.

    Check if there is LarsSGD in optimMethods. If so, return the weight decay of the first found LarsSGD. Else, return None

    returns

    The weight decay of the first found LarsSGD in the optimMethods. Or None if there is not one

  7. def createOptimForModule[T](model: Module[T], trust: Double = 1.0, learningRate: Double = 1e-3, learningRateDecay: Double = 0.01, weightDecay: Double = 0.005, momentum: Double = 0.5, learningRateSchedule: LearningRateSchedule = Default())(implicit arg0: ClassTag[T], ev: TensorNumeric[T]): Map[String, OptimMethod[T]]

    Permalink

    Create a Map(String, OptimMethod) for a container.

    Create a Map(String, OptimMethod) for a container. For each submodule in the container, generate (module.getName(), new Lars[T]) pair in the returned map. The resulting map can be used in setOptimMethods. Note: each Lars optim uses the same LearningRateSchedule

    model

    the container to build LARS optim method for

    trust

    the trust on the learning rate scale, should be in 0 to 1

    learningRate

    learning rate

    learningRateDecay

    learning rate decay

    weightDecay

    weight decay

    momentum

    momentum

    learningRateSchedule

    the learning rate scheduler

  8. def createOptimLRSchedulerForModule[A <: Activity, B <: Activity, T](model: Container[A, B, T], lrScheGenerator: (AbstractModule[Activity, Activity, T]) ⇒ (LearningRateSchedule, Boolean), trust: Double = 1.0, learningRate: Double = 1e-3, learningRateDecay: Double = 0.01, weightDecay: Double = 0.005, momentum: Double = 0.5)(implicit arg0: ClassTag[T], ev: TensorNumeric[T]): Map[String, OptimMethod[T]]

    Permalink

    Create a Map(String, OptimMethod) for a container.

    Create a Map(String, OptimMethod) for a container. For each submodule in the container, generate (module.getName(), new Lars[T]) pair in the returned map. The resulting map can be used in setOptimMethods. This function sets different LearningRateSchedules for different submodules

    model

    the container to build LARS optim method for

    lrScheGenerator

    the learning rate schedule generator for each sub-module. Generator accepts the sub-module that the schedule is linked to. It should return a tuple (learningRateSchedule, isOwner), where isOwner indicates whether the corresponding LARS optim method is responsible for showing the learning rate in getHyperParameter (multiple LARS optim methods may share one learning rate scheduler)

    trust

    the trust on the learning rate scale, should be in 0 to 1

    learningRate

    learning rate

    learningRateDecay

    learning rate decay

    weightDecay

    weight decay

    momentum

    momentum

  9. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  10. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  11. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  12. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  13. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  14. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  15. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  16. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  17. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  18. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  19. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  20. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  21. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  22. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped