Object/Class

com.intel.analytics.bigdl.optim

MeanAveragePrecision

Related Docs: class MeanAveragePrecision | package optim

Permalink

object MeanAveragePrecision extends Serializable

Linear Supertypes
Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. MeanAveragePrecision
  2. Serializable
  3. Serializable
  4. AnyRef
  5. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  5. def classification(nClasses: Int, topK: Int = 1): MeanAveragePrecision[Float]

    Permalink

    Calculate the Mean Average Precision (MAP) for classification output and target The algorithm follows VOC Challenge after 2007 Require class label beginning with 0

    Calculate the Mean Average Precision (MAP) for classification output and target The algorithm follows VOC Challenge after 2007 Require class label beginning with 0

    nClasses

    The number of classes

    topK

    Take top-k confident predictions into account. If k=-1,calculate on all predictions

  6. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  7. def cocoBBox(nClasses: Int, topK: Int = 1, skipClass: Int = 0, iouThres: (Float, Float, Int) = (0.5f, 0.05f, 10)): MeanAveragePrecisionObjectDetection[Float]

    Permalink

    Create MeanAveragePrecision validation method using COCO's algorithm for object detection.

    Create MeanAveragePrecision validation method using COCO's algorithm for object detection. IOU computed by the bounding boxes

    nClasses

    the number of classes (including skipped class)

    topK

    only take topK confident predictions (-1 for all predictions)

    skipClass

    skip calculating on a specific class (e.g. background) the class index starts from 0, or is -1 if no skipping

    iouThres

    the IOU thresholds, (rangeStart, stepSize, numOfThres), inclusive

    returns

    MeanAveragePrecisionObjectDetection

  8. def cocoSegmentation(nClasses: Int, topK: Int = 1, skipClass: Int = 0, iouThres: (Float, Float, Int) = (0.5f, 0.05f, 10)): MeanAveragePrecisionObjectDetection[Float]

    Permalink

    Create MeanAveragePrecision validation method using COCO's algorithm for object detection.

    Create MeanAveragePrecision validation method using COCO's algorithm for object detection. IOU computed by the segmentation masks

    nClasses

    the number of classes (including skipped class)

    topK

    only take topK confident predictions (-1 for all predictions)

    skipClass

    skip calculating on a specific class (e.g. background) the class index starts from 0, or is -1 if no skipping

    iouThres

    the IOU thresholds, (rangeStart, stepSize, numOfThres), inclusive

    returns

    MeanAveragePrecisionObjectDetection

  9. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  10. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  11. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  12. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  13. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  14. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  15. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  16. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  17. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  18. def pascalVOC(nClasses: Int, useVoc2007: Boolean = false, topK: Int = 1, skipClass: Int = 0): MeanAveragePrecisionObjectDetection[Float]

    Permalink

    Create MeanAveragePrecision validation method using Pascal VOC's algorithm for object detection

    Create MeanAveragePrecision validation method using Pascal VOC's algorithm for object detection

    nClasses

    the number of classes

    useVoc2007

    if using the algorithm in Voc2007 (11 points). Otherwise, use Voc2010

    topK

    only take topK confident predictions (-1 for all predictions)

    skipClass

    skip calculating on a specific class (e.g. background) the class index starts from 0, or is -1 if no skipping

    returns

    MeanAveragePrecisionObjectDetection

  19. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  20. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  21. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  22. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  23. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped