com
.
intel
.
analytics
.
bigdl
.
optim
TrainingContext
Related Doc:
package optim
class
TrainingContext
[
T
]
extends
Serializable
Linear Supertypes
Serializable
,
Serializable
,
AnyRef
,
Any
Ordering
Alphabetic
By Inheritance
Inherited
TrainingContext
Serializable
Serializable
AnyRef
Any
Hide All
Show All
Visibility
Public
All
Instance Constructors
new
TrainingContext
(
subModelNumber:
Int
,
numSamples:
Int
,
state:
Table
)
(
implicit
arg0:
ClassTag
[
T
]
)
Value Members
final
def
!=
(
arg0:
Any
)
:
Boolean
Definition Classes
AnyRef → Any
final
def
##
()
:
Int
Definition Classes
AnyRef → Any
final
def
==
(
arg0:
Any
)
:
Boolean
Definition Classes
AnyRef → Any
def
aggregate
[
T
]
(
gradients:
Array
[
Tensor
[
T
]]
)
(
implicit
arg0:
ClassTag
[
T
]
)
:
Tensor
[
T
]
final
def
asInstanceOf
[
T0
]
:
T0
Definition Classes
Any
def
clone
()
:
AnyRef
Attributes
protected[
java.lang
]
Definition Classes
AnyRef
Annotations
@throws
(
...
)
final
def
eq
(
arg0:
AnyRef
)
:
Boolean
Definition Classes
AnyRef
def
equals
(
arg0:
Any
)
:
Boolean
Definition Classes
AnyRef → Any
def
fetchBatch
[
T
]
(
data:
Iterator
[
MiniBatch
[
T
]]
)
(
implicit
arg0:
ClassTag
[
T
]
)
:
Array
[
MiniBatch
[
T
]]
def
finalize
()
:
Unit
Attributes
protected[
java.lang
]
Definition Classes
AnyRef
Annotations
@throws
(
classOf[java.lang.Throwable]
)
final
def
getClass
()
:
Class
[_]
Definition Classes
AnyRef → Any
def
hasCompleteAllSamples
(
recordsProcessed:
Int
,
model:
Module
[
T
]
)
:
Boolean
def
hashCode
()
:
Int
Definition Classes
AnyRef → Any
final
def
isInstanceOf
[
T0
]
:
Boolean
Definition Classes
Any
final
def
loadState
(
state:
Table
)
:
TrainingContext
.this.type
final
def
ne
(
arg0:
AnyRef
)
:
Boolean
Definition Classes
AnyRef
final
def
notify
()
:
Unit
Definition Classes
AnyRef
final
def
notifyAll
()
:
Unit
Definition Classes
AnyRef
val
numSamples
:
Int
val
state
:
Table
val
subModelNumber
:
Int
final
def
synchronized
[
T0
]
(
arg0: ⇒
T0
)
:
T0
Definition Classes
AnyRef
def
toString
()
:
String
Definition Classes
AnyRef → Any
def
train
[
T
]
(
data:
Array
[
MiniBatch
[
T
]]
,
models:
Array
[
Module
[
T
]]
,
criterion:
Array
[
Criterion
[
T
]]
)
(
implicit
arg0:
ClassTag
[
T
]
,
ev:
TensorNumeric
[
T
]
)
:
Seq
[
LossWithElapsedTime
]
def
update
[
T
]
(
optimSegments:
Map
[
String
,
ParamSegments
[
T
]]
,
weight:
Tensor
[
T
]
,
gradient:
Tensor
[
T
]
,
averageLoss:
Double
)
(
implicit
arg0:
ClassTag
[
T
]
,
ev:
TensorNumeric
[
T
]
)
:
Unit
final
def
wait
()
:
Unit
Definition Classes
AnyRef
Annotations
@throws
(
...
)
final
def
wait
(
arg0:
Long
,
arg1:
Int
)
:
Unit
Definition Classes
AnyRef
Annotations
@throws
(
...
)
final
def
wait
(
arg0:
Long
)
:
Unit
Definition Classes
AnyRef
Annotations
@throws
(
...
)
Inherited from
Serializable
Inherited from
Serializable
Inherited from
AnyRef
Inherited from
Any
Ungrouped