Object

com.intel.analytics.bigdl.tensor

DenseTensorBLAS

Related Doc: package tensor

Permalink

object DenseTensorBLAS

Linear Supertypes
AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. DenseTensorBLAS
  2. AnyRef
  3. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  5. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  6. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  7. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  8. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  9. def gemm[T](transa: Char, transb: Char, m: Int, n: Int, k: Int, alpha: T, a: Array[T], aOffset: Int, lda: Int, b: Array[T], bOffset: Int, ldb: Int, beta: T, c: Array[T], cOffset: Int, ldc: Int)(implicit ev: TensorNumeric[T]): Unit

    Permalink

    The gemm routines compute a scalar-matrix-matrix product and add the result to a scalar-matrix product, with general matrices.

    The gemm routines compute a scalar-matrix-matrix product and add the result to a scalar-matrix product, with general matrices. C := alpha*op(A)*op(B) + beta*C, where: op(X) is one of op(X) = X, or op(X) = XT, alpha and beta are scalars, A, B and C are matrices: op(A) is an m-by-k matrix, op(B) is a k-by-n matrix, C is an m-by-n matrix.

    this interface treat the input array as column-major array.

    transa

    Specifies the form of op(A) used in the matrix multiplication: if transa=CblasNoTrans, then op(A) = A; if transa=CblasTrans, then op(A) = AT;

    transb

    Specifies the form of op(B) used in the matrix multiplication: if transb=CblasNoTrans, then op(B) = B; if transb=CblasTrans, then op(B) = BT;

    m

    Specifies the number of rows of the matrix op(A) and of the matrix C. The value of m must be at least zero.

    n

    Specifies the number of columns of the matrix op(B) and the number of columns of the matrix C. The value of n must be at least zero.

    k

    Specifies the number of columns of the matrix op(A) and the number of rows of the matrix op(B). The value of k must be at least zero.

    alpha

    Specifies the scalar alpha.

    a

    Array. if transa=CblasNoTrans, size lda*k. if transa=CblasTrans, size lda*m.

    aOffset

    a offset

    lda

    Specifies the leading dimension of a as declared in the calling (sub)program. if transa=CblasNoTrans, lda must be at least max(1, m). if transa=CblasTrans, lda must be at least max(1, k).

    b

    Array. if transb=CblasNoTrans, size ldb by n. if transb=CblasTrans, size ldb by k.

    bOffset

    b offset

    ldb

    Specifies the leading dimension of b as declared in the calling (sub)program. if transb=CblasNoTrans, ldb must be at least max(1, m). if transb=CblasTrans, ldb must be at least max(1, k).

    beta

    Specifies the scalar beta. When beta is equal to zero, then c need not be set on input.

    c

    Array, size ldc by n. Before entry, the leading m-by-n part of the array c must contain the matrix C, except when beta is equal to zero, in which case c need not be set on entry.

    cOffset

    c offset

    ldc

    ldc must be at least max(1, m).

  10. def gemv[T](alpha: T, matrix: Tensor[T], vector: Tensor[T], beta: T, r: Tensor[T])(implicit ev: TensorNumeric[T]): Unit

    Permalink

    to be fixed: this interface treat the input tensor as row-major array.

  11. def gemv[T](trans: Char, m: Int, n: Int, alpha: T, a: Array[T], aOffset: Int, lda: Int, x: Array[T], xOffset: Int, incx: Int, beta: T, y: Array[T], yOffset: Int, incy: Int)(implicit ev: TensorNumeric[T]): Unit

    Permalink

    The gemv routines perform a matrix-vector operation defined as y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, where: alpha and beta are scalars, x and y are vectors, A is an m-by-n matrix.

    The gemv routines perform a matrix-vector operation defined as y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, where: alpha and beta are scalars, x and y are vectors, A is an m-by-n matrix.

    this interface treat the input array as column-major array.

    trans

    Specifies the operation: if trans=CblasNoTrans, then y := alpha*A*x + beta*y; if trans=CblasTrans, then y := alpha*A'*x + beta*y;

    m

    Specifies the number of rows of the matrix A. The value of m must be at least zero.

    n

    Specifies the number of columns of the matrix A. The value of n must be at least zero.

    alpha

    Specifies the scalar alpha.

    a

    Array, size lda* n. Before entry, the leading m-by-n part of the array a must contain the matrix A.

    aOffset

    a offset

    lda

    Specifies the leading dimension of a as declared in the calling (sub)program. the value of lda must be at least max(1, m).

    x

    Array, size at least (1+(n-1)*abs(incx)). Before entry, the incremented array x must contain the vector x.

    xOffset

    x offset

    incx

    Specifies the increment for the elements of x. The value of incx must not be zero.

    beta

    Specifies the scalar beta. When beta is set to zero, then y need not be set on input.

    y

    Array, size at least (1 +(m - 1)*abs(incy)). Before entry with non-zero beta, the incremented array y must contain the vector y.

    yOffset

    y offset

    incy

    Specifies the increment for the elements of y. The value of incy must not be zero.

  12. def ger[T](m: Int, n: Int, alpha: T, x: Array[T], xOffset: Int, incx: Int, y: Array[T], yOffset: Int, incy: Int, a: Array[T], aOffset: Int, lda: Int)(implicit ev: TensorNumeric[T]): Unit

    Permalink

    The ger routines perform a matrix-vector operation defined as A := alpha*x*y'+ A, where: alpha is a scalar, x is an m-element vector, y is an n-element vector, A is an m-by-n general matrix.

    The ger routines perform a matrix-vector operation defined as A := alpha*x*y'+ A, where: alpha is a scalar, x is an m-element vector, y is an n-element vector, A is an m-by-n general matrix.

    this interface treat the input array as column-major array.

    m

    Specifies the number of rows of the matrix A. The value of m must be at least zero.

    n

    Specifies the number of columns of the matrix A. The value of n must be at least zero.

    alpha

    Specifies the scalar alpha.

    x

    Array, size at least (1 + (m - 1)*abs(incx)). Before entry, the incremented array x must contain the m-element vector x.

    xOffset

    x offset

    incx

    Specifies the increment for the elements of x. The value of incx must not be zero.

    y

    Array, size at least (1 + (n - 1)*abs(incy)). Before entry, the incremented array y must contain the n-element vector y.

    yOffset

    y offset

    incy

    Specifies the increment for the elements of y. The value of incy must not be zero.

    a

    Array, size lda * n. Before entry, the leading m-by-n part of the array a must contain the matrix A.

    aOffset

    a offset

    lda

    Specifies the leading dimension of a as declared in the calling (sub)program. the value of lda must be at least max(1, m).

  13. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  14. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  15. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  16. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  17. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  18. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  19. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  20. var time: Long

    Permalink
  21. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  22. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  23. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  24. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from AnyRef

Inherited from Any

Ungrouped