Object/Trait

com.intel.analytics.bigdl.tensor

Tensor

Related Docs: trait Tensor | package tensor

Permalink

object Tensor extends Serializable

Linear Supertypes
Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. Tensor
  2. Serializable
  3. Serializable
  4. AnyRef
  5. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. val START_INDEX: Int

    Permalink

    Start index in BigDL.

    Start index in BigDL. We count from 1.

  5. def apply(matrix: DenseMatrix): Tensor[Double]

    Permalink

    create a tensor with a given spark Densematrix.

    create a tensor with a given spark Densematrix. The tensor will have the same size with the given spark Densematrix.

  6. def apply[T](matrix: DenseMatrix[T])(implicit arg0: ClassTag[T], ev: TensorNumeric[T]): Tensor[T]

    Permalink

    create a tensor with a given breeze matrix.

    create a tensor with a given breeze matrix. The tensor will have the same size with the given breeze matrix.

    matrix

    the given breeze matrix

  7. def apply(vector: DenseVector): Tensor[Double]

    Permalink

    create a tensor with a given spark Densevector.

    create a tensor with a given spark Densevector. The tensor will have the same size with the given spark Densevector.

    vector

    the given spark Densevector

  8. def apply[T](vector: DenseVector[T])(implicit arg0: ClassTag[T], ev: TensorNumeric[T]): Tensor[T]

    Permalink

    create a tensor with a given breeze vector.

    create a tensor with a given breeze vector. The tensor will have the same size with the given breeze vector.

    vector

    the given breeze vector

  9. def apply[T](other: Tensor[T])(implicit arg0: ClassTag[T], ev: TensorNumeric[T]): Tensor[T]

    Permalink

    create a tensor with a given tensor.

    create a tensor with a given tensor. The tensor will have same size with the given tensor.

    other

    the given tensor

  10. def apply[T](storage: Storage[T], storageOffset: Int, size: Array[Int] = null, stride: Array[Int] = null)(implicit arg0: ClassTag[T], ev: TensorNumeric[T]): Tensor[T]

    Permalink

    Returns a tensor which uses the existing Storage storage, starting at position storageOffset (>=1).

    Returns a tensor which uses the existing Storage storage, starting at position storageOffset (>=1). The size of each dimension of the tensor is given by the optional Array size. If not given, the size will be computed as the length of storage. The jump necessary to go from one element to the next one in each dimension is given by the optional Array stride. If not given, the stride() will be computed such that the tensor is as contiguous as possible in memory.

  11. def apply[T](data: Array[T], shape: Array[Int])(implicit arg0: ClassTag[T], ev: TensorNumeric[T]): Tensor[T]

    Permalink

    Returns a tensor with the given array and shape

    Returns a tensor with the given array and shape

    data

    the given storage

    shape

    the given shape

  12. def apply[T](storage: Storage[T])(implicit arg0: ClassTag[T], ev: TensorNumeric[T]): Tensor[T]

    Permalink

    Returns a tensor which uses the existing Storage storage.

    Returns a tensor which uses the existing Storage storage.

    storage

    the given storage

  13. def apply[T](sizes: Array[Int])(implicit arg0: ClassTag[T], ev: TensorNumeric[T]): Tensor[T]

    Permalink

    Create a tensor on given sizes.

    Create a tensor on given sizes. The tensor size will be the product of sizes

  14. def apply[T](dims: Int*)(implicit arg0: ClassTag[T], ev: TensorNumeric[T]): Tensor[T]

    Permalink

    Create a tensor on given dimensions.

    Create a tensor on given dimensions. The tensor size will be the product of dims

  15. def apply[T](xs: Table)(implicit arg0: ClassTag[T], ev: TensorNumeric[T]): Tensor[T]

    Permalink

    Create a tensor with a table

    Create a tensor with a table

    xs

    the table contains a multi-dimensional numbers

    returns

    a new Tensor

  16. def apply[T](d1: Int, d2: Int, d3: Int, d4: Int, d5: Int)(implicit arg0: ClassTag[T], ev: TensorNumeric[T]): Tensor[T]

    Permalink
  17. def apply[T](d1: Int, d2: Int, d3: Int, d4: Int)(implicit arg0: ClassTag[T], ev: TensorNumeric[T]): Tensor[T]

    Permalink
  18. def apply[T](d1: Int, d2: Int, d3: Int)(implicit arg0: ClassTag[T], ev: TensorNumeric[T]): Tensor[T]

    Permalink
  19. def apply[T](d1: Int, d2: Int)(implicit arg0: ClassTag[T], ev: TensorNumeric[T]): Tensor[T]

    Permalink
  20. def apply[T](d1: Int)(implicit arg0: ClassTag[T], ev: TensorNumeric[T]): Tensor[T]

    Permalink

    Create a tensor up to 5 dimensions.

    Create a tensor up to 5 dimensions. The tensor size will be d1 x d2 x d3 x d4 x d5.

  21. def apply[T]()(implicit arg0: ClassTag[T], ev: TensorNumeric[T]): Tensor[T]

    Permalink

    Returns an empty tensor.

  22. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  23. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  24. def dense[T](sparseTensor: Tensor[T], res: Tensor[T] = null)(implicit arg0: ClassTag[T], ev: TensorNumeric[T]): Tensor[T]

    Permalink

    Transform a sparseTensor to DenseTensor.

    Transform a sparseTensor to DenseTensor.

    sparseTensor

    a sparse tensor

    res

    if defined, override to res, else will generate a new tensor.

    returns

    a DenseTensor.

  25. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  26. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  27. def expand[T](tensor: Tensor[T], sizes: Int*): Tensor[T]

    Permalink

    This is equivalent to tensor.expand(sizes.toArray)

  28. def expandAs[T](tensor: Tensor[T], template: Tensor[T]): Tensor[T]

    Permalink

    This is equivalent to tensor.expandAs(template)

  29. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  30. def gaussian1D[T](size: Int = 3, sigma: Double = 0.25, amplitude: Int = 1, normalize: Boolean = false, mean: Double = 0.5, tensor: Tensor[T] = null)(implicit arg0: ClassTag[T], ev: TensorNumeric[T]): Tensor[T]

    Permalink

    Returns a 1D Gaussian kernel of size size, mean mean and standard deviation sigma.

    Returns a 1D Gaussian kernel of size size, mean mean and standard deviation sigma.

    tensor

    If tensor is set, will discard size, and write result to tensor.

  31. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  32. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  33. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  34. def load[T](path: String): Tensor[T]

    Permalink
  35. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  36. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  37. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  38. def ones[T](sizes: Int*)(implicit arg0: ClassTag[T], ev: TensorNumeric[T]): Tensor[T]

    Permalink

    return a tensor of sizes filled with 1.

    return a tensor of sizes filled with 1.

    returns

    a tensor

  39. def randperm[T](size: Int)(implicit arg0: ClassTag[T], ev: TensorNumeric[T]): Tensor[T]

    Permalink

    This is equivalent to DenseTensor.randperm[T](size)

  40. def range[T](xmin: Double, xmax: Double, step: Int = 1)(implicit arg0: ClassTag[T], ev: TensorNumeric[T]): Tensor[T]

    Permalink

    This is equivalent to DenseTensor.range(xmin, xmax, step)

  41. def repeatTensor[T](tensor: Tensor[T], sizes: Int*): Tensor[T]

    Permalink

    This is equivalent to tensor.repeatTensor(sizes.toArray)

  42. def scalar[T](value: T)(implicit arg0: ClassTag[T], ev: TensorNumeric[T]): Tensor[T]

    Permalink

    Create a scalar tensor of this value

    Create a scalar tensor of this value

    returns

    the created scalar tensor

  43. def sparse[T](shape: Array[Int], nElement: Int = 1)(implicit arg0: ClassTag[T], ev: TensorNumeric[T]): Tensor[T]

    Permalink

    Create a sparse tensor with shape and number of non-zero elements.

    Create a sparse tensor with shape and number of non-zero elements.

    shape

    tensor's shape.

    nElement

    number of non-zero elements.

  44. def sparse[T](denseTensor: Tensor[T])(implicit arg0: ClassTag[T], ev: TensorNumeric[T]): Tensor[T]

    Permalink

    Transform a DenseTensor to SparseTensor.

  45. def sparse[T](indices: Array[Array[Int]], values: Array[T], shape: Array[Int], dimension: Int)(implicit arg0: ClassTag[T], ev: TensorNumeric[T]): Tensor[T]

    Permalink

    Create a SparseTensor.

    Create a SparseTensor.

    indices

    dimension-D array to describe the indices of values, should be zero-based and ascending.

    values

    non-zero values in this SparseTensor.

    shape

    shape

    dimension

    dimension

  46. def sparse[T](indices: Array[Array[Int]], values: Storage[T], shape: Array[Int], dimension: Int)(implicit arg0: ClassTag[T], ev: TensorNumeric[T]): Tensor[T]

    Permalink

    Create a SparseTensor.

    Create a SparseTensor.

    indices

    dimension-D array to describe the indices of values, should be zero-based and ascending.

    values

    non-zero values in this SparseTensor.

    shape

    shape

    dimension

    dimension

  47. def sparse[T](indices: Array[Array[Int]], values: Array[T], shape: Array[Int])(implicit arg0: ClassTag[T], ev: TensorNumeric[T]): Tensor[T]

    Permalink

    Create a SparseTensor.

    Create a SparseTensor.

    indices

    dimension-D array to describe the indices of values, should be zero-based and ascending.

    values

    non-zero values in this SparseTensor.

    shape

    shape

  48. def sparse[T](indices: Array[Array[Int]], values: Storage[T], shape: Array[Int])(implicit arg0: ClassTag[T], ev: TensorNumeric[T]): Tensor[T]

    Permalink

    Create a SparseTensor.

    Create a SparseTensor.

    indices

    dimension-D array to describe the indices of values, should be zero-based and ascending.

    values

    non-zero values in this SparseTensor.

    shape

    shape

  49. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  50. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  51. def unique[T](tensor: Tensor[T], distinctBuffer: Tensor[T] = null, indicesBuffer: Tensor[Int] = null)(implicit arg0: ClassTag[T], ev: TensorNumeric[T]): (Tensor[T], Tensor[Int])

    Permalink

    Find the distinct value and its indices in a 1D tensor.

    Find the distinct value and its indices in a 1D tensor.

    tensor

    a 1D tensor

    distinctBuffer

    a buffer for its distinct values.

    indicesBuffer

    a buffer for its indcies.

    returns

    (distinctValues, indices)

  52. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  53. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  54. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped