Class/Object

com.intel.analytics.bigdl.utils.tf

BigDLSessionImpl

Related Docs: object BigDLSessionImpl | package tf

Permalink

class BigDLSessionImpl[T] extends Session[T]

Linear Supertypes
Session[T], AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. BigDLSessionImpl
  2. Session
  3. AnyRef
  4. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new BigDLSessionImpl(graph: Seq[NodeDef], context: Context[T], byteOrder: ByteOrder = ByteOrder.LITTLE_ENDIAN)(implicit arg0: ClassTag[T], ev: TensorNumeric[T])

    Permalink

Type Members

  1. type DataCache = HashMap[String, Array[Seq[Table]]]

    Permalink

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  5. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  6. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  7. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  8. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  9. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  10. def getRDD(endPoints: Seq[String], sc: SparkContext, hasToBatch: Boolean = true): RDD[Table]

    Permalink

    Get and calculate the data up to the specified endpoints, and return as a RDD[Table]

    Get and calculate the data up to the specified endpoints, and return as a RDD[Table]

    endPoints

    output endpoints

    hasToBatch

    indicate whether the subgraph to be executed already has to batch operation. If yes, the batch operation will be undone at the end of this execution, that is split each tensor by their first dimension.

  11. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  12. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  13. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  14. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  15. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  16. def predict(endPoints: Seq[String], isDataBatch: Boolean, batchSize: Int, sc: SparkContext): RDD[Activity]

    Permalink

    Predict data with tensorflow graph.

    Predict data with tensorflow graph. The data must hold in a queue

    isDataBatch

    if the model input is the batch

    batchSize

    batch size, which should be original batch size * total core number

    Definition Classes
    BigDLSessionImplSession
  17. def saveParameters(binFile: String): BigDLSessionImpl.this.type

    Permalink

    Dump varaible contents to a file

    Dump varaible contents to a file

    Definition Classes
    BigDLSessionImplSession
  18. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  19. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  20. def train(endPoints: Seq[String], optMethod: OptimMethod[T], endWhen: Trigger, isDataBatch: Boolean, batchSize: Int, sc: SparkContext, loss: Option[String]): BigDLSessionImpl.this.type

    Permalink

    Train the tensorflow graph.

    Train the tensorflow graph. The model must be fed data with a queue

    isDataBatch

    if the model input is the batch

    batchSize

    batch size, which should be original batch size * total core number

    Definition Classes
    BigDLSessionImplSession
  21. def train(outputs: Seq[String], dataSet: DistributedDataSet[MiniBatch[T]], optMethod: OptimMethod[T], criterion: Criterion[T], endWhen: Trigger): Graph[T]

    Permalink

    Train the tensorflow graph

    Train the tensorflow graph

    Definition Classes
    BigDLSessionImplSession
  22. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  23. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  24. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from Session[T]

Inherited from AnyRef

Inherited from Any

Ungrouped