Source code for bigdl.models.lenet.lenet5

#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

from optparse import OptionParser
from bigdl.dataset import mnist
from bigdl.dataset.transformer import *
from bigdl.nn.layer import *
from bigdl.nn.criterion import *
from bigdl.optim.optimizer import *
from bigdl.util.common import *


[docs]def build_model(class_num): model = Sequential() model.add(Reshape([1, 28, 28])) model.add(SpatialConvolution(1, 6, 5, 5)) model.add(Tanh()) model.add(SpatialMaxPooling(2, 2, 2, 2)) model.add(Tanh()) model.add(SpatialConvolution(6, 12, 5, 5)) model.add(SpatialMaxPooling(2, 2, 2, 2)) model.add(Reshape([12 * 4 * 4])) model.add(Linear(12 * 4 * 4, 100)) model.add(Tanh()) model.add(Linear(100, class_num)) model.add(LogSoftMax()) return model
[docs]def get_mnist(sc, data_type="train", location="/tmp/mnist"): """ Get and normalize the mnist data. We would download it automatically if the data doesn't present at the specific location. :param sc: SparkContext :param data_type: training data or testing data :param location: Location storing the mnist :return: A RDD of Sample """ (images, labels) = mnist.read_data_sets(location, data_type) images = sc.parallelize(images) labels = sc.parallelize(labels) # Target start from 1 in BigDL record = images.zip(labels).map(lambda features_label: Sample.from_ndarray(features_label[0], features_label[1] + 1)) return record
if __name__ == "__main__": parser = OptionParser() parser.add_option("-a", "--action", dest="action", default="train") parser.add_option("-b", "--batchSize", type=int, dest="batchSize", default="128") parser.add_option("-o", "--modelPath", dest="modelPath", default="/tmp/lenet5/model.470") parser.add_option("-c", "--checkpointPath", dest="checkpointPath", default="/tmp/lenet5") parser.add_option("-t", "--endTriggerType", dest="endTriggerType", default="epoch") parser.add_option("-n", "--endTriggerNum", type=int, dest="endTriggerNum", default="20") (options, args) = parser.parse_args(sys.argv) sc = SparkContext(appName="lenet5", conf=create_spark_conf()) init_engine() if options.action == "train": def get_end_trigger(): if options.endTriggerType.lower() == "epoch": return MaxEpoch(options.endTriggerNum) else: return MaxIteration(options.endTriggerNum) train_data = get_mnist(sc, "train").map( normalizer(mnist.TRAIN_MEAN, mnist.TRAIN_STD)) test_data = get_mnist(sc, "test").map( normalizer(mnist.TEST_MEAN, mnist.TEST_STD)) optimizer = Optimizer( model=build_model(10), training_rdd=train_data, criterion=ClassNLLCriterion(), optim_method=SGD(learningrate=0.01, learningrate_decay=0.0002), end_trigger=get_end_trigger(), batch_size=options.batchSize) optimizer.set_validation( batch_size=options.batchSize, val_rdd=test_data, trigger=EveryEpoch(), val_method=[Top1Accuracy()] ) optimizer.set_checkpoint(EveryEpoch(), options.checkpointPath) trained_model = optimizer.optimize() parameters = trained_model.parameters() elif options.action == "test": # Load a pre-trained model and then validate it through top1 accuracy. test_data = get_mnist(sc, "test").map( normalizer(mnist.TEST_MEAN, mnist.TEST_STD)) model = Model.load(options.modelPath) results = model.test(test_data, options.batchSize, [Top1Accuracy()]) for result in results: print(result) sc.stop()