Source code for bigdl.nn.initialization_method
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import sys
from bigdl.util.common import JavaValue
if sys.version >= '3':
long = int
unicode = str
[docs]class InitializationMethod(JavaValue):
"""
Initialization method to initialize bias and weight.
The init method will be called in Module.reset()
"""
[docs]class Zeros(InitializationMethod):
"""
Initializer that generates tensors with zeros.
"""
def __init__(self, bigdl_type="float"):
JavaValue.__init__(self, None, bigdl_type)
[docs]class Ones(InitializationMethod):
"""
Initializer that generates tensors with ones.
"""
def __init__(self, bigdl_type="float"):
JavaValue.__init__(self, None, bigdl_type)
[docs]class RandomNormal(InitializationMethod):
"""
Initializer that generates tensors with a normal distribution.
"""
def __init__(self, mean, stdv, bigdl_type="float"):
mean = mean + 0.0
stdv = stdv + 0.0
JavaValue.__init__(self, None, bigdl_type, mean, stdv)
[docs]class ConstInitMethod(InitializationMethod):
"""
Initializer that generates tensors with certain constant double.
"""
def __init__(self, value, bigdl_type="float"):
value = value + 0.0
JavaValue.__init__(self, None, bigdl_type, value)
[docs]class Xavier(InitializationMethod):
"""
Xavier Initializer. See http://jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf
"""
def __init__(self, bigdl_type="float"):
JavaValue.__init__(self, None, bigdl_type)
[docs]class BilinearFiller(InitializationMethod):
"""
Initialize the weight with coefficients for bilinear interpolation.
A common use case is with the DeconvolutionLayer acting as upsampling.
The variable tensor passed in the init function should have 5 dimensions
of format [nGroup, nInput, nOutput, kH, kW], and kH should be equal to kW
"""
def __init__(self, bigdl_type="float"):
JavaValue.__init__(self, None, bigdl_type)