com.intel.analytics.bigdl.nn

Graph

object Graph extends Serializable

Linear Supertypes
Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. Graph
  2. Serializable
  3. Serializable
  4. AnyRef
  5. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Type Members

  1. type ModuleNode[T] = Node[AbstractModule[Activity, Tensor[T], T]]

    Node for graph container.

    Node for graph container. The module should have a tensor/table input while a tensor output

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. def apply[T](input: ModuleNode[T], output: ModuleNode[T])(implicit arg0: ClassTag[T], ev: TensorNumeric[T]): Graph[T]

    Build a single input, single output graph container

    Build a single input, single output graph container

    input

    input nodes

    output

    output nodes

    returns

    a graph container

  7. def apply[T](input: Array[ModuleNode[T]], output: ModuleNode[T])(implicit arg0: ClassTag[T], ev: TensorNumeric[T]): Graph[T]

    Build a multiple inputs, single output graph container

    Build a multiple inputs, single output graph container

    input

    input nodes

    output

    output node

    returns

    a graph container

  8. def apply[T](input: ModuleNode[T], output: Array[ModuleNode[T]])(implicit arg0: ClassTag[T], ev: TensorNumeric[T]): Graph[T]

    Build a single input, multiple outputs graph container

    Build a single input, multiple outputs graph container

    input

    input node

    output

    output nodes

    returns

    a graph container

  9. def apply[T](input: Array[ModuleNode[T]], output: Array[ModuleNode[T]], variables: Option[(Array[Tensor[T]], Array[Tensor[T]])] = None)(implicit arg0: ClassTag[T], ev: TensorNumeric[T]): Graph[T]

    Build multiple inputs, multiple outputs graph container.

    Build multiple inputs, multiple outputs graph container.

    input

    input node

    output

    output node

    returns

    a graph container

  10. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  11. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  12. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  13. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  14. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  15. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  16. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  17. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  18. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  19. final def notify(): Unit

    Definition Classes
    AnyRef
  20. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  21. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  22. def toString(): String

    Definition Classes
    AnyRef → Any
  23. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  24. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  25. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped