com.intel.analytics.bigdl.nn

RandomNormal

case class RandomNormal(mean: Double, stdv: Double) extends InitializationMethod with Product with Serializable

Initializer that generates tensors with a normal distribution.

Linear Supertypes
Serializable, Serializable, Product, Equals, InitializationMethod, AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. RandomNormal
  2. Serializable
  3. Serializable
  4. Product
  5. Equals
  6. InitializationMethod
  7. AnyRef
  8. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Instance Constructors

  1. new RandomNormal(mean: Double, stdv: Double)

Type Members

  1. type Shape = Array[Int]

    Definition Classes
    InitializationMethod

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  7. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  8. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  9. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  10. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  11. def init[T](variable: Tensor[T], dataFormat: VariableFormat = Default)(implicit ev: TensorNumeric[T]): Unit

    Initialize the given weight and bias.

    Initialize the given weight and bias.

    variable

    the weight to initialize

    dataFormat

    the data format of weight indicating the dimension order of the weight. "output_first" means output is in the lower dimension "input_first" means input is in the lower dimension.

    Definition Classes
    RandomNormalInitializationMethod
  12. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  13. val mean: Double

  14. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  15. final def notify(): Unit

    Definition Classes
    AnyRef
  16. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  17. val stdv: Double

  18. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  19. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  20. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  21. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from Serializable

Inherited from Serializable

Inherited from Product

Inherited from Equals

Inherited from InitializationMethod

Inherited from AnyRef

Inherited from Any

Ungrouped