org.apache.spark.ml

DLEstimator

class DLEstimator[T] extends DLEstimatorBase[DLEstimator[T], DLModel[T]] with DLParams with HasBatchSize

DLEstimator helps to train a BigDL Model with the Spark ML Estimator/Transfomer pattern, thus Spark users can conveniently fit BigDL into Spark ML pipeline.

DLEstimator supports feature and label data in the format of Array[Double], Array[Float], org.apache.spark.mllib.linalg.{Vector, VectorUDT} for Spark 1.5, 1.6 and org.apache.spark.ml.linalg.{Vector, VectorUDT} for Spark 2.0+. Also label data can be of DoubleType. User should specify the feature data dimensions and label data dimensions via the constructor parameters featureSize and labelSize respectively. Internally the feature and label data are converted to BigDL tensors, to further train a BigDL model efficiently.

For details usage, please refer to examples in package com.intel.analytics.bigdl.example.MLPipeline

Linear Supertypes
HasBatchSize, DLEstimatorBase[DLEstimator[T], DLModel[T]], HasLabelCol, DLParams, HasPredictionCol, HasFeaturesCol, Estimator[DLModel[T]], PipelineStage, Logging, Params, Serializable, Serializable, Identifiable, AnyRef, Any
Known Subclasses
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. DLEstimator
  2. HasBatchSize
  3. DLEstimatorBase
  4. HasLabelCol
  5. DLParams
  6. HasPredictionCol
  7. HasFeaturesCol
  8. Estimator
  9. PipelineStage
  10. Logging
  11. Params
  12. Serializable
  13. Serializable
  14. Identifiable
  15. AnyRef
  16. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Instance Constructors

  1. new DLEstimator(model: Module[T], criterion: Criterion[T], featureSize: Array[Int], labelSize: Array[Int], uid: String = "DLEstimator")(implicit arg0: ClassTag[T], ev: TensorNumeric[T])

    model

    BigDL module to be optimized

    criterion

    BigDL criterion method

    featureSize

    The size (Tensor dimensions) of the feature data. e.g. an image may be with width * height = 28 * 28, featureSize = Array(28, 28).

    labelSize

    The size (Tensor dimensions) of the label data.

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def $[T](param: Param[T]): T

    Attributes
    protected
    Definition Classes
    Params
  5. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  6. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  7. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  8. final val batchSize: Param[Int]

    Definition Classes
    HasBatchSize
  9. final def clear(param: Param[_]): DLEstimator.this.type

    Attributes
    protected
    Definition Classes
    Params
  10. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  11. def copy(extra: ParamMap): DLEstimator[T]

    Definition Classes
    DLEstimator → DLEstimatorBase → Estimator → PipelineStage → Params
  12. def copyValues[T <: Params](to: T, extra: ParamMap): T

    Attributes
    protected
    Definition Classes
    Params
  13. val criterion: Criterion[T]

    BigDL criterion method

  14. final def defaultCopy[T <: Params](extra: ParamMap): T

    Attributes
    protected
    Definition Classes
    Params
  15. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  16. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  17. def explainParam(param: Param[_]): String

    Definition Classes
    Params
  18. def explainParams(): String

    Definition Classes
    Params
  19. final def extractParamMap(): ParamMap

    Definition Classes
    Params
  20. final def extractParamMap(extra: ParamMap): ParamMap

    Definition Classes
    Params
  21. val featureSize: Array[Int]

    The size (Tensor dimensions) of the feature data.

    The size (Tensor dimensions) of the feature data. e.g. an image may be with width * height = 28 * 28, featureSize = Array(28, 28).

  22. final val featuresCol: Param[String]

    Definition Classes
    HasFeaturesCol
  23. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  24. def fit(dataset: DataFrame): DLModel[T]

    Definition Classes
    DLEstimatorBase → Estimator
  25. def fit(dataset: DataFrame, paramMaps: Array[ParamMap]): Seq[DLModel[T]]

    Definition Classes
    Estimator
  26. def fit(dataset: DataFrame, paramMap: ParamMap): DLModel[T]

    Definition Classes
    Estimator
  27. def fit(dataset: DataFrame, firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DLModel[T]

    Definition Classes
    Estimator
    Annotations
    @varargs()
  28. final def get[T](param: Param[T]): Option[T]

    Definition Classes
    Params
  29. final def getBatchSize: Int

    Definition Classes
    HasBatchSize
  30. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  31. final def getDefault[T](param: Param[T]): Option[T]

    Definition Classes
    Params
  32. def getFeatureArrayCol: String

    Attributes
    protected
    Definition Classes
    DLParams
  33. final def getFeaturesCol: String

    Definition Classes
    HasFeaturesCol
  34. def getLabelArrayCol: String

    Attributes
    protected
    Definition Classes
    DLEstimatorBase
  35. final def getLabelCol: String

    Definition Classes
    HasLabelCol
  36. def getMaxEpoch: Int

  37. final def getOrDefault[T](param: Param[T]): T

    Definition Classes
    Params
  38. def getParam(paramName: String): Param[Any]

    Definition Classes
    Params
  39. final def getPredictionCol: String

    Definition Classes
    HasPredictionCol
  40. final def hasDefault[T](param: Param[T]): Boolean

    Definition Classes
    Params
  41. def hasParam(paramName: String): Boolean

    Definition Classes
    Params
  42. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  43. def internalFit(featureAndLabel: RDD[(Seq[AnyVal], Seq[AnyVal])]): DLModel[T]

    Attributes
    protected
    Definition Classes
    DLEstimator → DLEstimatorBase
  44. final def isDefined(param: Param[_]): Boolean

    Definition Classes
    Params
  45. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  46. final def isSet(param: Param[_]): Boolean

    Definition Classes
    Params
  47. def isTraceEnabled(): Boolean

    Attributes
    protected
    Definition Classes
    Logging
  48. final val labelCol: Param[String]

    Definition Classes
    HasLabelCol
  49. val labelSize: Array[Int]

    The size (Tensor dimensions) of the label data.

  50. def log: Logger

    Attributes
    protected
    Definition Classes
    Logging
  51. def logDebug(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  52. def logDebug(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  53. def logError(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  54. def logError(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  55. def logInfo(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  56. def logInfo(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  57. def logName: String

    Attributes
    protected
    Definition Classes
    Logging
  58. def logTrace(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  59. def logTrace(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  60. def logWarning(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  61. def logWarning(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  62. val maxEpoch: IntParam

    number of max Epoch for the training

  63. val model: Module[T]

    BigDL module to be optimized

  64. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  65. final def notify(): Unit

    Definition Classes
    AnyRef
  66. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  67. lazy val params: Array[Param[_]]

    Definition Classes
    Params
  68. final val predictionCol: Param[String]

    Definition Classes
    HasPredictionCol
  69. final def set(paramPair: ParamPair[_]): DLEstimator.this.type

    Attributes
    protected
    Definition Classes
    Params
  70. final def set(param: String, value: Any): DLEstimator.this.type

    Attributes
    protected
    Definition Classes
    Params
  71. final def set[T](param: Param[T], value: T): DLEstimator.this.type

    Attributes
    protected
    Definition Classes
    Params
  72. def setBatchSize(value: Int): DLEstimator.this.type

  73. final def setDefault(paramPairs: ParamPair[_]*): DLEstimator.this.type

    Attributes
    protected
    Definition Classes
    Params
  74. final def setDefault[T](param: Param[T], value: T): DLEstimator.this.type

    Attributes
    protected
    Definition Classes
    Params
  75. def setFeaturesCol(featuresColName: String): DLEstimator.this.type

  76. def setLabelCol(labelColName: String): DLEstimator.this.type

  77. def setMaxEpoch(value: Int): DLEstimator.this.type

  78. def setPredictionCol(value: String): DLEstimator.this.type

  79. def supportedTypesToSeq(row: Row, colType: DataType, index: Int): Seq[AnyVal]

    Definition Classes
    DLParams
  80. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  81. def toArrayType(dataset: DataFrame): RDD[(Seq[AnyVal], Seq[AnyVal])]

    Attributes
    protected
    Definition Classes
    DLEstimatorBase
  82. def toString(): String

    Definition Classes
    Identifiable → AnyRef → Any
  83. def transformSchema(schema: StructType): StructType

    Definition Classes
    DLEstimator → PipelineStage
  84. def transformSchema(schema: StructType, logging: Boolean): StructType

    Attributes
    protected
    Definition Classes
    PipelineStage
    Annotations
    @DeveloperApi()
  85. val uid: String

    Definition Classes
    DLEstimator → Identifiable
  86. def validateParams(): Unit

    Definition Classes
    Params
  87. def validateSchema(schema: StructType): Unit

    Attributes
    protected
    Definition Classes
    DLEstimatorBase → DLParams
  88. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  89. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  90. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  91. def wrapBigDLModel(m: Module[T], featureSize: Array[Int]): DLModel[T]

    sub classes can extend the method and return required model for different transform tasks

    sub classes can extend the method and return required model for different transform tasks

    Attributes
    protected

Inherited from HasBatchSize

Inherited from DLEstimatorBase[DLEstimator[T], DLModel[T]]

Inherited from HasLabelCol

Inherited from DLParams

Inherited from HasPredictionCol

Inherited from HasFeaturesCol

Inherited from Estimator[DLModel[T]]

Inherited from PipelineStage

Inherited from Logging

Inherited from Params

Inherited from Serializable

Inherited from Serializable

Inherited from Identifiable

Inherited from AnyRef

Inherited from Any

Ungrouped