L1 Regularizer

Scala:

val l1Regularizer = L1Regularizer(rate)

Python:

regularizerl1 = L1Regularizer(rate)

L1 regularizer is used to add penalty to the gradWeight to avoid overfitting.

In our code implementation, gradWeight = gradWeight + alpha * abs(weight)

For more details, please refer to wiki.

Scala example:


import com.intel.analytics.bigdl.utils.RandomGenerator.RNG
import com.intel.analytics.bigdl.tensor._
import com.intel.analytics.bigdl.optim._
import com.intel.analytics.bigdl.numeric.NumericFloat
import com.intel.analytics.bigdl.nn._

RNG.setSeed(100)

val input = Tensor(3, 5).rand
val gradOutput = Tensor(3, 5).rand
val linear = Linear(5, 5, wRegularizer = L1Regularizer(0.2), bRegularizer = L1Regularizer(0.2))

val output = linear.forward(input)
val gradInput = linear.backward(input, gradOutput)

scala> input
input: com.intel.analytics.bigdl.tensor.Tensor[Float] =
0.54340494      0.67115563      0.2783694       0.4120464       0.4245176
0.52638245      0.84477615      0.14860484      0.004718862     0.15671109
0.12156912      0.18646719      0.67074907      0.21010774      0.82585275
[com.intel.analytics.bigdl.tensor.DenseTensor$mcF$sp of size 3x5]

scala> gradOutput
gradOutput: com.intel.analytics.bigdl.tensor.Tensor[Float] =
0.4527399       0.13670659      0.87014264      0.5750933       0.063681036
0.89132196      0.62431186      0.20920213      0.52334774      0.18532822
0.5622963       0.10837689      0.0058171963    0.21969749      0.3074232
[com.intel.analytics.bigdl.tensor.DenseTensor$mcF$sp of size 3x5]

scala> linear.gradWeight
res2: com.intel.analytics.bigdl.tensor.Tensor[Float] =
0.9835552       1.3616763       0.83564335      0.108898684     0.59625006
0.21608911      0.8393639       0.0035243928    -0.11795368     0.4453743
0.38366735      0.9618148       0.47721142      0.5607486       0.6069793
0.81469804      0.6690552       0.18522228      0.08559488      0.7075894
-0.030468717    0.056625083     0.051471338     0.2917061       0.109963015
[com.intel.analytics.bigdl.tensor.DenseTensor of size 5x5]

Python example:


from bigdl.nn.layer import *
from bigdl.nn.criterion import *
from bigdl.optim.optimizer import *
from bigdl.util.common import *

input = np.random.uniform(0, 1, (3, 5)).astype("float32")
gradOutput = np.random.uniform(0, 1, (3, 5)).astype("float32")
linear = Linear(5, 5, wRegularizer = L1Regularizer(0.2), bRegularizer = L1Regularizer(0.2))
output = linear.forward(input)
gradInput = linear.backward(input, gradOutput)

> linear.parameters()
{u'Linear@596d857b': {u'bias': array([ 0.3185505 , -0.02004393,  0.34620118, -0.09206461,  0.40776938], dtype=float32),
  u'gradBias': array([ 2.14087653,  1.82181644,  1.90674937,  1.37307787,  0.81534696], dtype=float32),
  u'gradWeight': array([[ 0.34909648,  0.85083449,  1.44904375,  0.90150446,  0.57136625],
         [ 0.3745544 ,  0.42218602,  1.53656614,  1.1836741 ,  1.00702667],
         [ 0.30529332,  0.26813674,  0.85559171,  0.61224306,  0.34721529],
         [ 0.22859855,  0.8535381 ,  1.19809723,  1.37248564,  0.50041491],
         [ 0.36197871,  0.03069445,  0.64837945,  0.12765063,  0.12872688]], dtype=float32),
  u'weight': array([[-0.12423037,  0.35694697,  0.39038274, -0.34970999, -0.08283543],
         [-0.4186025 , -0.33235055,  0.34948507,  0.39953214,  0.16294235],
         [-0.25171402, -0.28955361, -0.32243955, -0.19771226, -0.29320192],
         [-0.39263198,  0.37766701,  0.14673658,  0.24882999, -0.0779015 ],
         [ 0.0323218 , -0.31266898,  0.31543773, -0.0898933 , -0.33485892]], dtype=float32)}}

L2 Regularizer

Scala:

val l2Regularizer = L2Regularizer(rate)

Python:

regularizerl2 = L2Regularizer(rate)

L2 regularizer is used to add penalty to the gradWeight to avoid overfitting.

In our code implementation, gradWeight = gradWeight + alpha * weight * weight

For more details, please refer to wiki.

Scala example:


import com.intel.analytics.bigdl.utils.RandomGenerator.RNG
import com.intel.analytics.bigdl.tensor._
import com.intel.analytics.bigdl.optim._
import com.intel.analytics.bigdl.numeric.NumericFloat
import com.intel.analytics.bigdl.nn._

RNG.setSeed(100)linear.updateParameters

val input = Tensor(3, 5).rand
val gradOutput = Tensor(3, 5).rand
val linear = Linear(5, 5, wRegularizer = L2Regularizer(0.2), bRegularizer = L2Regularizer(0.2))

val output = linear.forward(input)
val gradInput = linear.backward(input, gradOutput)

scala> input
input: com.intel.analytics.bigdl.tensor.Tensor[Float] =
0.54340494      0.67115563      0.2783694       0.4120464       0.4245176
0.52638245      0.84477615      0.14860484      0.004718862     0.15671109
0.12156912      0.18646719      0.67074907      0.21010774      0.82585275
[com.intel.analytics.bigdl.tensor.DenseTensor$mcF$sp of size 3x5]

scala> gradOutput
gradOutput: com.intel.analytics.bigdl.tensor.Tensor[Float] =
0.4527399       0.13670659      0.87014264      0.5750933       0.063681036
0.89132196      0.62431186      0.20920213      0.52334774      0.18532822
0.5622963       0.10837689      0.0058171963    0.21969749      0.3074232
[com.intel.analytics.bigdl.tensor.DenseTensor$mcF$sp of size 3x5]

scala> linear.gradWeight
res0: com.intel.analytics.bigdl.tensor.Tensor[Float] =
1.0329735       0.047239657     0.8979603       0.53614384      1.2781229
0.5621818       0.29772854      0.69706535      0.30559152      0.8352279
1.3044653       0.43065858      0.9896795       0.7435816       1.6003494
0.94218314      0.6793372       0.97101355      0.62892824      1.3458569
0.73134506      0.5975239       0.9109101       0.59374434      1.1656629
[com.intel.analytics.bigdl.tensor.DenseTensor of size 5x5]

Python example:

from bigdl.nn.layer import *
from bigdl.nn.criterion import *
from bigdl.optim.optimizer import *
from bigdl.util.common import *

input = np.random.uniform(0, 1, (3, 5)).astype("float32")
gradOutput = np.random.uniform(0, 1, (3, 5)).astype("float32")
linear = Linear(5, 5, wRegularizer = L2Regularizer(0.2), bRegularizer = L2Regularizer(0.2))
output = linear.forward(input)
gradInput = linear.backward(input, gradOutput)

> linear.parameters()
{u'Linear@787aab5e': {u'bias': array([-0.43960261, -0.12444571,  0.22857292, -0.43216187,  0.27770036], dtype=float32),
  u'gradBias': array([ 0.51726723,  1.32883406,  0.57567948,  1.7791357 ,  1.2887038 ], dtype=float32),
  u'gradWeight': array([[ 0.45477036,  0.22262168,  0.21923628,  0.26152173,  0.19836383],
         [ 1.12261093,  0.72921795,  0.08405925,  0.78192139,  0.48798928],
         [ 0.34581488,  0.21195598,  0.26357424,  0.18987852,  0.2465664 ],
         [ 1.18659711,  1.11271608,  0.72589797,  1.19098675,  0.33769298],
         [ 0.82314551,  0.71177536,  0.4428404 ,  0.764337  ,  0.3500182 ]], dtype=float32),
  u'weight': array([[ 0.03727285, -0.39697152,  0.42733836, -0.34291714, -0.13833708],
         [ 0.09232076, -0.09720675, -0.33625153,  0.06477787, -0.34739712],
         [ 0.17145753,  0.10128133,  0.16679128, -0.33541158,  0.40437087],
         [-0.03005157, -0.36412898,  0.0629965 ,  0.13443278, -0.38414535],
         [-0.16630849,  0.06934392,  0.40328237,  0.22299488, -0.1178569 ]], dtype=float32)}}

L1L2 Regularizer

Scala:

val l1l2Regularizer = L1L2Regularizer(l1rate, l2rate)

Python:

regularizerl1l2 = L1L2Regularizer(l1rate, l2rate)

L1L2 regularizer is used to add penalty to the gradWeight to avoid overfitting.

In our code implementation, we will apply L1regularizer and L2regularizer sequentially.

For more details, please refer to wiki.

Scala example:


import com.intel.analytics.bigdl.utils.RandomGenerator.RNG
import com.intel.analytics.bigdl.tensor._
import com.intel.analytics.bigdl.optim._
import com.intel.analytics.bigdl.numeric.NumericFloat
import com.intel.analytics.bigdl.nn._

RNG.setSeed(100)

val input = Tensor(3, 5).rand
val gradOutput = Tensor(3, 5).rand
val linear = Linear(5, 5, wRegularizer = L1L2Regularizer(0.2, 0.2), bRegularizer = L1L2Regularizer(0.2, 0.2))

val output = linear.forward(input)
val gradInput = linear.backward(input, gradOutput)

scala> input
input: com.intel.analytics.bigdl.tensor.Tensor[Float] =
0.54340494      0.67115563      0.2783694       0.4120464       0.4245176
0.52638245      0.84477615      0.14860484      0.004718862     0.15671109
0.12156912      0.18646719      0.67074907      0.21010774      0.82585275
[com.intel.analytics.bigdl.tensor.DenseTensor$mcF$sp of size 3x5]

scala> gradOutput
gradOutput: com.intel.analytics.bigdl.tensor.Tensor[Float] =
0.4527399       0.13670659      0.87014264      0.5750933       0.063681036
0.89132196      0.62431186      0.20920213      0.52334774      0.18532822
0.5622963       0.10837689      0.0058171963    0.21969749      0.3074232
[com.intel.analytics.bigdl.tensor.DenseTensor$mcF$sp of size 3x5]

scala> linear.gradWeight
res1: com.intel.analytics.bigdl.tensor.Tensor[Float] =
1.069174        1.4422078       0.8913989       0.042112567     0.53756505
0.14077617      0.8959319       -0.030221784    -0.1583686      0.4690558
0.37145022      0.99747723      0.5559263       0.58614403      0.66380215
0.88983417      0.639738        0.14924419      0.027530536     0.71988696
-0.053217214    -8.643427E-4    -0.036953792    0.29753304      0.06567569
[com.intel.analytics.bigdl.tensor.DenseTensor of size 5x5]

Python example:

from bigdl.nn.layer import *
from bigdl.nn.criterion import *
from bigdl.optim.optimizer import *
from bigdl.util.common import *

input = np.random.uniform(0, 1, (3, 5)).astype("float32")
gradOutput = np.random.uniform(0, 1, (3, 5)).astype("float32")
linear = Linear(5, 5, wRegularizer = L1L2Regularizer(0.2, 0.2), bRegularizer = L1L2Regularizer(0.2, 0.2))
output = linear.forward(input)
gradInput = linear.backward(input, gradOutput)

> linear.parameters()
{u'Linear@1356aa91': {u'bias': array([-0.05799473, -0.0548001 ,  0.00408955, -0.22004321, -0.07143869], dtype=float32),
  u'gradBias': array([ 0.89119786,  1.09953558,  1.03394508,  1.19511735,  2.02241182], dtype=float32),
  u'gradWeight': array([[ 0.89061081,  0.58810186, -0.10087357,  0.19108151,  0.60029608],
         [ 0.95275503,  0.2333075 ,  0.46897018,  0.74429053,  1.16038764],
         [ 0.22894514,  0.60031962,  0.3836292 ,  0.15895618,  0.83136207],
         [ 0.49079862,  0.80913013,  0.55491877,  0.69608945,  0.80458677],
         [ 0.98890561,  0.49226439,  0.14861123,  1.37666655,  1.47615671]], dtype=float32),
  u'weight': array([[ 0.44654208,  0.16320795, -0.36029238, -0.25365737, -0.41974261],
         [ 0.18809238, -0.28065765,  0.27677274, -0.29904234,  0.41338971],
         [-0.03731538,  0.22493915,  0.10021331, -0.19495697,  0.25470355],
         [-0.30836752,  0.12083009,  0.3773002 ,  0.24059358, -0.40325543],
         [-0.13601269, -0.39310011, -0.05292636,  0.20001481, -0.08444868]], dtype=float32)}}