Source code for bigdl.nn.initialization_method

#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

import sys

from bigdl.util.common import JavaValue

if sys.version >= '3':
    long = int
    unicode = str

[docs]class InitializationMethod(JavaValue): """ Initialization method to initialize bias and weight. The init method will be called in Module.reset() """
[docs]class Zeros(InitializationMethod): """ Initializer that generates tensors with zeros. """ def __init__(self, bigdl_type="float"): JavaValue.__init__(self, None, bigdl_type)
[docs]class Ones(InitializationMethod): """ Initializer that generates tensors with ones. """ def __init__(self, bigdl_type="float"): JavaValue.__init__(self, None, bigdl_type)
[docs]class RandomUniform(InitializationMethod): """ Initializer that generates tensors with a uniform distribution. It draws samples from a uniform distribution within [lower, upper] If lower and upper is not specified, it draws samples form a uniform distribution within [-limit, limit] where "limit" is "1/sqrt(fan_in)" """ def __init__(self, upper=None, lower=None, bigdl_type="float"): if upper is not None and lower is not None: upper = upper + 0.0 lower = lower + 0.0 JavaValue.__init__(self, None, bigdl_type, upper, lower) else: JavaValue.__init__(self, None, bigdl_type)
[docs]class RandomNormal(InitializationMethod): """ Initializer that generates tensors with a normal distribution. """ def __init__(self, mean, stdv, bigdl_type="float"): mean = mean + 0.0 stdv = stdv + 0.0 JavaValue.__init__(self, None, bigdl_type, mean, stdv)
[docs]class ConstInitMethod(InitializationMethod): """ Initializer that generates tensors with certain constant double. """ def __init__(self, value, bigdl_type="float"): value = value + 0.0 JavaValue.__init__(self, None, bigdl_type, value)
[docs]class Xavier(InitializationMethod): """ Xavier Initializer. See http://jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf """ def __init__(self, bigdl_type="float"): JavaValue.__init__(self, None, bigdl_type)
[docs]class BilinearFiller(InitializationMethod): """ Initialize the weight with coefficients for bilinear interpolation. A common use case is with the DeconvolutionLayer acting as upsampling. The variable tensor passed in the init function should have 5 dimensions of format [nGroup, nInput, nOutput, kH, kW], and kH should be equal to kW """ def __init__(self, bigdl_type="float"): JavaValue.__init__(self, None, bigdl_type)