bigdl.models.ml_pipeline package¶
Submodules¶
bigdl.models.ml_pipeline.dl_classifier module¶
-
class
bigdl.models.ml_pipeline.dl_classifier.
DLClassifier
(model, criterion, feature_size, bigdl_type='float')[source]¶
-
class
bigdl.models.ml_pipeline.dl_classifier.
DLClassifierModel
(model, featureSize, jvalue=None, bigdl_type='float')[source]¶
-
class
bigdl.models.ml_pipeline.dl_classifier.
DLEstimator
(model, criterion, feature_size, label_size, jvalue=None, bigdl_type='float')[source]¶ Bases:
pyspark.ml.pipeline.Estimator
,pyspark.ml.param.shared.HasFeaturesCol
,pyspark.ml.param.shared.HasLabelCol
,pyspark.ml.param.shared.HasPredictionCol
,bigdl.models.ml_pipeline.dl_classifier.HasBatchSize
,bigdl.models.ml_pipeline.dl_classifier.HasMaxEpoch
,bigdl.models.ml_pipeline.dl_classifier.HasLearningRate
,bigdl.util.common.JavaValue
-
class
bigdl.models.ml_pipeline.dl_classifier.
DLModel
(model, featureSize, jvalue=None, bigdl_type='float')[source]¶ Bases:
pyspark.ml.pipeline.Model
,pyspark.ml.param.shared.HasFeaturesCol
,pyspark.ml.param.shared.HasPredictionCol
,bigdl.models.ml_pipeline.dl_classifier.HasBatchSize
,bigdl.models.ml_pipeline.dl_classifier.HasFeatureSize
,bigdl.util.common.JavaValue
-
class
bigdl.models.ml_pipeline.dl_classifier.
HasBatchSize
[source]¶ Bases:
pyspark.ml.param.Params
Mixin for param batchSize: batch size.
-
batchSize
= Param(parent='undefined', name='batchSize', doc='batchSize')¶ param for batch size.
-
-
class
bigdl.models.ml_pipeline.dl_classifier.
HasFeatureSize
[source]¶ Bases:
pyspark.ml.param.Params
-
featureSize
= Param(parent='undefined', name='featureSize', doc='size of the feature')¶
-