com.intel.analytics.bigdl.optim

Optimizer

object Optimizer

Linear Supertypes
AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. Optimizer
  2. AnyRef
  3. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. def apply[T, D](model: Module[T], dataset: DataSet[D], criterion: Criterion[T])(implicit arg0: ClassTag[T], ev: TensorNumeric[T]): Optimizer[T, D]

  7. def apply[T](model: Module[T], sampleRDD: RDD[Sample[T]], criterion: Criterion[T], batchSize: Int, miniBatch: MiniBatch[T])(implicit arg0: ClassTag[T], ev: TensorNumeric[T]): Optimizer[T, MiniBatch[T]]

    Apply an optimizer with User-Defined MiniBatch.

    Apply an optimizer with User-Defined MiniBatch.

    model

    model will be optimizied

    sampleRDD

    training Samples

    criterion

    loss function

    batchSize

    mini batch size

    miniBatch

    An User-Defined MiniBatch to construct a mini batch.

    returns

    an Optimizer

  8. def apply[T](model: Module[T], sampleRDD: RDD[Sample[T]], criterion: Criterion[T], batchSize: Int, featurePaddingParam: PaddingParam[T])(implicit arg0: ClassTag[T], ev: TensorNumeric[T]): Optimizer[T, MiniBatch[T]]

  9. def apply[T](model: Module[T], sampleRDD: RDD[Sample[T]], criterion: Criterion[T], batchSize: Int, featurePaddingParam: PaddingParam[T], labelPaddingParam: PaddingParam[T])(implicit arg0: ClassTag[T], ev: TensorNumeric[T]): Optimizer[T, MiniBatch[T]]

    Apply an Optimizer who could apply padding to the Samples with a padding strategy.

    Apply an Optimizer who could apply padding to the Samples with a padding strategy.

    model

    model will be optimizied

    sampleRDD

    training Samples

    criterion

    loss function

    batchSize

    mini batch size

    featurePaddingParam

    feature padding strategy, see com.intel.analytics.bigdl.dataset.PaddingParam for details.

    labelPaddingParam

    label padding strategy, see com.intel.analytics.bigdl.dataset.PaddingParam for details.

    returns

    An optimizer

  10. def apply[T](model: Module[T], sampleRDD: RDD[Sample[T]], criterion: Criterion[T], batchSize: Int)(implicit arg0: ClassTag[T], ev: TensorNumeric[T]): Optimizer[T, MiniBatch[T]]

  11. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  12. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  13. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  14. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  15. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  16. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  17. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  18. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  19. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  20. final def notify(): Unit

    Definition Classes
    AnyRef
  21. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  22. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  23. def toString(): String

    Definition Classes
    AnyRef → Any
  24. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  25. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  26. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from AnyRef

Inherited from Any

Ungrouped