com.intel.analytics.bigdl.optim

SGD

object SGD extends Serializable

Linear Supertypes
Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. SGD
  2. Serializable
  3. Serializable
  4. AnyRef
  5. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Type Members

  1. case class Default() extends LearningRateSchedule with Product with Serializable

    It is the default learning rate schedule.

  2. case class EpochDecay(decayType: (Int) ⇒ Double) extends LearningRateSchedule with Product with Serializable

    It is an epoch decay learning rate schedule The learning rate decays through a function argument on number of run epochs

  3. case class EpochSchedule(regimes: Array[Regime]) extends LearningRateSchedule with Product with Serializable

    EpochSchedule is a learning rate schedule which configure the learning rate according to some pre-defined Regime.

  4. case class EpochStep(stepSize: Int, gamma: Double) extends LearningRateSchedule with Product with Serializable

    EpochStep is a learning rate schedule, which rescale the learning rate by gamma for each stepSize epochs.

  5. case class Exponential(decayStep: Int, decayRate: Double, stairCase: Boolean = false) extends LearningRateSchedule with Product with Serializable

    Exponential is a learning rate schedule, which rescale the learning rate by lr_{n + 1} = lr * decayRate ^ (iter / decayStep)

  6. trait LearningRateSchedule extends AnyRef

    Hyper parameter schedule for SGD

  7. case class MultiStep(stepSizes: Array[Int], gamma: Double) extends LearningRateSchedule with Product with Serializable

    similar to step but it allows non uniform steps defined by stepSizes

  8. case class NaturalExp(decay_step: Int, gamma: Double) extends LearningRateSchedule with Product with Serializable

    NaturalExp is a learning rate schedule, which rescale the learning rate by exp ( -decay_rate * iter / decay_step ) referring to tensorflow's learning rate decay # natural_exp_decay

  9. case class Plateau(monitor: String, factor: Float = 0.1, patience: Int = 10, mode: String = "min", epsilon: Float = 1.0E-4, cooldown: Int = 0, minLr: Float = 0) extends LearningRateSchedule with Product with Serializable

    Plateau is the learning rate schedule when a metric has stopped improving.

  10. case class Poly(power: Double, maxIteration: Int) extends LearningRateSchedule with Product with Serializable

    A learning rate decay policy, where the effective learning rate follows a polynomial decay, to be zero by the max_iteration.

  11. case class Regime(startEpoch: Int, endEpoch: Int, config: Table) extends Product with Serializable

    A structure to specify hyper parameters by start epoch and end epoch.

  12. case class Step(stepSize: Int, gamma: Double) extends LearningRateSchedule with Product with Serializable

    A learning rate decay policy, where the effective learning rate is calculated as base_lr * gamma ^ (floor(iter / stepSize))

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  7. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  8. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  9. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  10. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  11. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  12. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  13. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  14. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  15. final def notify(): Unit

    Definition Classes
    AnyRef
  16. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  17. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  18. def toString(): String

    Definition Classes
    AnyRef → Any
  19. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  20. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  21. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped