org.apache.spark.ml

DLClassifier

class DLClassifier[T] extends DLEstimator[T]

DLClassifier is a specialized DLEstimator that simplifies the data format for classification tasks. It only supports label column of DoubleType. and the fitted DLClassifierModel will have the prediction column of DoubleType.

Linear Supertypes
DLEstimator[T], HasBatchSize, DLEstimatorBase[DLEstimator[T], DLModel[T]], HasLabelCol, DLParams, HasPredictionCol, HasFeaturesCol, Estimator[DLModel[T]], PipelineStage, Logging, Params, Serializable, Serializable, Identifiable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. DLClassifier
  2. DLEstimator
  3. HasBatchSize
  4. DLEstimatorBase
  5. HasLabelCol
  6. DLParams
  7. HasPredictionCol
  8. HasFeaturesCol
  9. Estimator
  10. PipelineStage
  11. Logging
  12. Params
  13. Serializable
  14. Serializable
  15. Identifiable
  16. AnyRef
  17. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Instance Constructors

  1. new DLClassifier(model: Module[T], criterion: Criterion[T], featureSize: Array[Int], uid: String = ...)(implicit arg0: ClassTag[T], ev: TensorNumeric[T])

    model

    BigDL module to be optimized

    criterion

    BigDL criterion method

    featureSize

    The size (Tensor dimensions) of the feature data.

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def $[T](param: Param[T]): T

    Attributes
    protected
    Definition Classes
    Params
  5. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  6. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  7. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  8. final val batchSize: Param[Int]

    Definition Classes
    HasBatchSize
  9. final def clear(param: Param[_]): DLClassifier.this.type

    Attributes
    protected
    Definition Classes
    Params
  10. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  11. def copy(extra: ParamMap): DLClassifier[T]

    Definition Classes
    DLClassifierDLEstimator → DLEstimatorBase → Estimator → PipelineStage → Params
  12. def copyValues[T <: Params](to: T, extra: ParamMap): T

    Attributes
    protected
    Definition Classes
    Params
  13. val criterion: Criterion[T]

    BigDL criterion method

    BigDL criterion method

    Definition Classes
    DLClassifierDLEstimator
  14. final def defaultCopy[T <: Params](extra: ParamMap): T

    Attributes
    protected
    Definition Classes
    Params
  15. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  16. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  17. def explainParam(param: Param[_]): String

    Definition Classes
    Params
  18. def explainParams(): String

    Definition Classes
    Params
  19. final def extractParamMap(): ParamMap

    Definition Classes
    Params
  20. final def extractParamMap(extra: ParamMap): ParamMap

    Definition Classes
    Params
  21. val featureSize: Array[Int]

    The size (Tensor dimensions) of the feature data.

    The size (Tensor dimensions) of the feature data.

    Definition Classes
    DLClassifierDLEstimator
  22. final val featuresCol: Param[String]

    Definition Classes
    HasFeaturesCol
  23. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  24. def fit(dataset: DataFrame): DLModel[T]

    Definition Classes
    DLEstimatorBase → Estimator
  25. def fit(dataset: DataFrame, paramMaps: Array[ParamMap]): Seq[DLModel[T]]

    Definition Classes
    Estimator
  26. def fit(dataset: DataFrame, paramMap: ParamMap): DLModel[T]

    Definition Classes
    Estimator
  27. def fit(dataset: DataFrame, firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DLModel[T]

    Definition Classes
    Estimator
    Annotations
    @varargs()
  28. final def get[T](param: Param[T]): Option[T]

    Definition Classes
    Params
  29. final def getBatchSize: Int

    Definition Classes
    HasBatchSize
  30. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  31. final def getDefault[T](param: Param[T]): Option[T]

    Definition Classes
    Params
  32. def getFeatureArrayCol: String

    Attributes
    protected
    Definition Classes
    DLParams
  33. final def getFeaturesCol: String

    Definition Classes
    HasFeaturesCol
  34. def getLabelArrayCol: String

    Attributes
    protected
    Definition Classes
    DLEstimatorBase
  35. final def getLabelCol: String

    Definition Classes
    HasLabelCol
  36. def getLearningRate: Double

    Definition Classes
    DLEstimator
  37. def getLearningRateDecay: Double

    Definition Classes
    DLEstimator
  38. def getMaxEpoch: Int

    Definition Classes
    DLEstimator
  39. def getOptimMethod: OptimMethod[_]

    Definition Classes
    DLEstimator
  40. final def getOrDefault[T](param: Param[T]): T

    Definition Classes
    Params
  41. def getParam(paramName: String): Param[Any]

    Definition Classes
    Params
  42. final def getPredictionCol: String

    Definition Classes
    HasPredictionCol
  43. final def hasDefault[T](param: Param[T]): Boolean

    Definition Classes
    Params
  44. def hasParam(paramName: String): Boolean

    Definition Classes
    Params
  45. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  46. def internalFit(featureAndLabel: RDD[(Seq[AnyVal], Seq[AnyVal])]): DLModel[T]

    Attributes
    protected
    Definition Classes
    DLEstimator → DLEstimatorBase
  47. final def isDefined(param: Param[_]): Boolean

    Definition Classes
    Params
  48. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  49. final def isSet(param: Param[_]): Boolean

    Definition Classes
    Params
  50. def isTraceEnabled(): Boolean

    Attributes
    protected
    Definition Classes
    Logging
  51. final val labelCol: Param[String]

    Definition Classes
    HasLabelCol
  52. val labelSize: Array[Int]

    Definition Classes
    DLEstimator
  53. val learningRate: DoubleParam

    learning rate for the optimizer in the DLEstimator.

    learning rate for the optimizer in the DLEstimator. Default: 0.001

    Definition Classes
    DLEstimator
  54. val learningRateDecay: DoubleParam

    learning rate decay.

    learning rate decay. Default: 0

    Definition Classes
    DLEstimator
  55. def log: Logger

    Attributes
    protected
    Definition Classes
    Logging
  56. def logDebug(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  57. def logDebug(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  58. def logError(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  59. def logError(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  60. def logInfo(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  61. def logInfo(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  62. def logName: String

    Attributes
    protected
    Definition Classes
    Logging
  63. def logTrace(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  64. def logTrace(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  65. def logWarning(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  66. def logWarning(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  67. val maxEpoch: IntParam

    number of max Epoch for the training, an epoch refers to a traverse over the training data Default: 100

    number of max Epoch for the training, an epoch refers to a traverse over the training data Default: 100

    Definition Classes
    DLEstimator
  68. val model: Module[T]

    BigDL module to be optimized

    BigDL module to be optimized

    Definition Classes
    DLClassifierDLEstimator
  69. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  70. final def notify(): Unit

    Definition Classes
    AnyRef
  71. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  72. val optimMethod: Param[OptimMethod[_]]

    optimization method to be used.

    optimization method to be used. BigDL supports many optimization methods like Adam, SGD and LBFGS. Refer to package com.intel.analytics.bigdl.optim for all the options. Default: SGD

    Definition Classes
    DLEstimator
  73. lazy val params: Array[Param[_]]

    Definition Classes
    Params
  74. final val predictionCol: Param[String]

    Definition Classes
    HasPredictionCol
  75. final def set(paramPair: ParamPair[_]): DLClassifier.this.type

    Attributes
    protected
    Definition Classes
    Params
  76. final def set(param: String, value: Any): DLClassifier.this.type

    Attributes
    protected
    Definition Classes
    Params
  77. final def set[T](param: Param[T], value: T): DLClassifier.this.type

    Attributes
    protected
    Definition Classes
    Params
  78. def setBatchSize(value: Int): DLClassifier.this.type

    Definition Classes
    DLEstimator
  79. final def setDefault(paramPairs: ParamPair[_]*): DLClassifier.this.type

    Attributes
    protected
    Definition Classes
    Params
  80. final def setDefault[T](param: Param[T], value: T): DLClassifier.this.type

    Attributes
    protected
    Definition Classes
    Params
  81. def setFeaturesCol(featuresColName: String): DLClassifier.this.type

    Definition Classes
    DLEstimator
  82. def setLabelCol(labelColName: String): DLClassifier.this.type

    Definition Classes
    DLEstimator
  83. def setLearningRate(value: Double): DLClassifier.this.type

    Definition Classes
    DLEstimator
  84. def setLearningRateDecay(value: Double): DLClassifier.this.type

    Definition Classes
    DLEstimator
  85. def setMaxEpoch(value: Int): DLClassifier.this.type

    Definition Classes
    DLEstimator
  86. def setOptimMethod(value: OptimMethod[_]): DLClassifier.this.type

    Definition Classes
    DLEstimator
  87. def setPredictionCol(value: String): DLClassifier.this.type

    Definition Classes
    DLEstimator
  88. def supportedTypesToSeq(row: Row, colType: DataType, index: Int): Seq[AnyVal]

    Definition Classes
    DLParams
  89. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  90. def toArrayType(dataset: DataFrame): RDD[(Seq[AnyVal], Seq[AnyVal])]

    Attributes
    protected
    Definition Classes
    DLEstimatorBase
  91. def toString(): String

    Definition Classes
    Identifiable → AnyRef → Any
  92. def transformSchema(schema: StructType): StructType

    Definition Classes
    DLClassifierDLEstimator → PipelineStage
  93. def transformSchema(schema: StructType, logging: Boolean): StructType

    Attributes
    protected
    Definition Classes
    PipelineStage
    Annotations
    @DeveloperApi()
  94. val uid: String

    Definition Classes
    DLClassifierDLEstimator → Identifiable
  95. def validateParams(): Unit

    Definition Classes
    Params
  96. def validateSchema(schema: StructType): Unit

    Attributes
    protected
    Definition Classes
    DLEstimatorBase → DLParams
  97. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  98. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  99. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  100. def wrapBigDLModel(m: Module[T], featureSize: Array[Int]): DLClassifierModel[T]

    sub classes can extend the method and return required model for different transform tasks

    sub classes can extend the method and return required model for different transform tasks

    Attributes
    protected
    Definition Classes
    DLClassifierDLEstimator

Inherited from DLEstimator[T]

Inherited from HasBatchSize

Inherited from DLEstimatorBase[DLEstimator[T], DLModel[T]]

Inherited from HasLabelCol

Inherited from DLParams

Inherited from HasPredictionCol

Inherited from HasFeaturesCol

Inherited from Estimator[DLModel[T]]

Inherited from PipelineStage

Inherited from Logging

Inherited from Params

Inherited from Serializable

Inherited from Serializable

Inherited from Identifiable

Inherited from AnyRef

Inherited from Any

Ungrouped