bigdl.models.ml_pipeline package¶
Submodules¶
bigdl.models.ml_pipeline.dl_classifier module¶
-
class
bigdl.models.ml_pipeline.dl_classifier.DLClassifier(model, criterion, feature_size, bigdl_type='float')[source]¶
-
class
bigdl.models.ml_pipeline.dl_classifier.DLClassifierModel(model, featureSize, jvalue=None, bigdl_type='float')[source]¶
-
class
bigdl.models.ml_pipeline.dl_classifier.DLEstimator(model, criterion, feature_size, label_size, jvalue=None, bigdl_type='float')[source]¶ Bases:
pyspark.ml.pipeline.Estimator,pyspark.ml.param.shared.HasFeaturesCol,pyspark.ml.param.shared.HasLabelCol,pyspark.ml.param.shared.HasPredictionCol,bigdl.models.ml_pipeline.dl_classifier.HasBatchSize,bigdl.models.ml_pipeline.dl_classifier.HasMaxEpoch,bigdl.models.ml_pipeline.dl_classifier.HasLearningRate,bigdl.util.common.JavaValue
-
class
bigdl.models.ml_pipeline.dl_classifier.DLModel(model, featureSize, jvalue=None, bigdl_type='float')[source]¶ Bases:
pyspark.ml.pipeline.Model,pyspark.ml.param.shared.HasFeaturesCol,pyspark.ml.param.shared.HasPredictionCol,bigdl.models.ml_pipeline.dl_classifier.HasBatchSize,bigdl.models.ml_pipeline.dl_classifier.HasFeatureSize,bigdl.util.common.JavaValue
-
class
bigdl.models.ml_pipeline.dl_classifier.HasBatchSize[source]¶ Bases:
pyspark.ml.param.ParamsMixin for param batchSize: batch size.
-
batchSize= Param(parent='undefined', name='batchSize', doc='batchSize')¶ param for batch size.
-
-
class
bigdl.models.ml_pipeline.dl_classifier.HasFeatureSize[source]¶ Bases:
pyspark.ml.param.Params-
featureSize= Param(parent='undefined', name='featureSize', doc='size of the feature')¶
-