com.intel.analytics.bigdl.nn

Graph

abstract class Graph[T] extends Container[Activity, Activity, T]

A graph container. The modules in the container are connected as a directed Graph. Each module can output one tensor or multiple tensors(as table). The edges between modules in the graph define how these tensors are passed. For example, if a module outputs two tensors, you can pass these two tensors together to its following module, or pass only one of them to its following module. If a tensor in the module output is connected to multiple modules, in the back propagation, the gradients from multiple connection will be accumulated. If multiple edges point to one module, the tensors from these edges will be stack as a table, then pass to that module. In the back propagation, the gradients will be splited based on how the input tensors stack.

The graph container has multiple inputs and multiple outputs. The order of the input tensors should be same with the order of the input nodes when you construct the graph container. In the back propagation, the order of the gradients tensors should be the same with the order of the output nodes.

If there's one output, the module output is a tensor. If there're multiple outputs, the module output is a table, which is actually an sequence of tensor. The order of the output tensors is same with the order of the output modules.

All inputs should be able to connect to outputs through some paths in the graph. It is allowed that some successors of the inputs node are not connect to outputs. If so, these nodes will be excluded in the computation.

T

Numeric type. Only support float/double now

Annotations
@SerialVersionUID( 2896121321564992779L )
Linear Supertypes
Container[Activity, Activity, T], AbstractModule[Activity, Activity, T], Serializable, Serializable, AnyRef, Any
Known Subclasses
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. Graph
  2. Container
  3. AbstractModule
  4. Serializable
  5. Serializable
  6. AnyRef
  7. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Instance Constructors

  1. new Graph(inputs: Seq[ModuleNode[T]], outputs: Seq[ModuleNode[T]], variables: Option[(Array[Tensor[T]], Array[Tensor[T]])] = scala.None)(implicit arg0: ClassTag[T], ev: TensorNumeric[T])

    inputs

    input nodes

    outputs

    output nodes

    variables

    an Array of tensor containing all the weights and biases of this graph, used when different nodes of this graph may share the same weight or bias.

Abstract Value Members

  1. abstract def updateGradInput(input: Activity, gradOutput: Activity): Activity

    Computing the gradient of the module with respect to its own input.

    Computing the gradient of the module with respect to its own input. This is returned in gradInput. Also, the gradInput state variable is updated accordingly.

    input
    gradOutput
    returns

    Definition Classes
    AbstractModule
  2. abstract def updateOutput(input: Activity): Activity

    Computes the output using the current parameter set of the class and input.

    Computes the output using the current parameter set of the class and input. This function returns the result which is stored in the output field.

    input
    returns

    Definition Classes
    AbstractModule

Concrete Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. def accActivity(activity: Activity, other: Activity): Activity

    Attributes
    protected
    Annotations
    @inline()
  7. def accGradParameters(input: Activity, gradOutput: Activity): Unit

    Computing the gradient of the module with respect to its own parameters.

    Computing the gradient of the module with respect to its own parameters. Many modules do not perform this step as they do not have any parameters. The state variable name for the parameters is module dependent. The module is expected to accumulate the gradients with respect to the parameters in some variable.

    input
    gradOutput

    Definition Classes
    AbstractModule
  8. def add(module: AbstractModule[_ <: Activity, _ <: Activity, T]): Graph.this.type

    Add a sub-module to the contained modules

    Add a sub-module to the contained modules

    module

    module to be add

    returns

    this container

    Definition Classes
    GraphContainer
  9. def addZeroTensorToMissingGradOutput(output: Table, gradOutput: Table): Unit

    For a multi-tensor output module, some output tensors may not contributed to the final forward result.

    For a multi-tensor output module, some output tensors may not contributed to the final forward result. So in the back propagation, the gradient on these positions are missing. And we use zero tensor to populate.

    output
    gradOutput

    Attributes
    protected
  10. def apply(name: String): Option[AbstractModule[Activity, Activity, T]]

    Find a module with given name.

    Find a module with given name. If there is no module with given name, it will return None. If there are multiple modules with the given name, an exception will be thrown.

    name
    returns

    Definition Classes
    ContainerAbstractModule
  11. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  12. def backward(input: Activity, gradOutput: Activity): Activity

    Performs a back-propagation step through the module, with respect to the given input.

    Performs a back-propagation step through the module, with respect to the given input. In general this method makes the assumption forward(input) has been called before, with the same input. This is necessary for optimization reasons. If you do not respect this rule, backward() will compute incorrect gradients.

    input

    input data

    gradOutput

    gradient of next layer

    returns

    gradient corresponding to input data

    Definition Classes
    AbstractModule
  13. var backwardGraph: DirectedGraph[AbstractModule[Activity, Activity, T]]

    Attributes
    protected
  14. var backwardNodes: Array[Node[AbstractModule[Activity, Activity, T]]]

    Attributes
    protected
  15. var backwardTime: Long

    Attributes
    protected
    Definition Classes
    AbstractModule
  16. def canEqual(other: Any): Boolean

    Definition Classes
    ContainerAbstractModule
  17. def checkEngineType(): Graph.this.type

    get execution engine type

    get execution engine type

    Definition Classes
    ContainerAbstractModule
  18. def clearState(): Graph.this.type

    Clear cached activities to save storage space or network bandwidth.

    Clear cached activities to save storage space or network bandwidth. Note that we use Tensor.set to keep some information like tensor share

    The subclass should override this method if it allocate some extra resource, and call the super.clearState in the override method

    returns

    Definition Classes
    ContainerAbstractModule
  19. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  20. def cloneModule(): AbstractModule[Activity, Activity, T]

    Definition Classes
    AbstractModule
  21. val dummyOutput: Node[AbstractModule[Activity, Activity, T]]

    Attributes
    protected
  22. var dummyOutputGrad: ModuleNode[T]

    Attributes
    protected
  23. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  24. def equals(other: Any): Boolean

    Definition Classes
    ContainerAbstractModule → AnyRef → Any
  25. def evaluate(): Graph.this.type

    Definition Classes
    ContainerAbstractModule
  26. def evaluate(dataSet: LocalDataSet[MiniBatch[T]], vMethods: Array[ValidationMethod[T]]): Array[(ValidationResult, ValidationMethod[T])]

    Definition Classes
    AbstractModule
  27. def evaluate(dataset: RDD[Sample[T]], vMethods: Array[ValidationMethod[T]], batchSize: Option[Int] = None): Array[(ValidationResult, ValidationMethod[T])]

    use ValidationMethod to evaluate module

    use ValidationMethod to evaluate module

    dataset

    dataset for test

    vMethods

    validation methods

    batchSize

    total batchsize of all partitions, optional param and default 4 * partitionNum of dataset

    returns

    Definition Classes
    AbstractModule
  28. def fetchModelGradInput(): Activity

    Attributes
    protected
  29. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  30. def findGradOutput(curNode: ModuleNode[T], gradOutput: Activity): Activity

    Attributes
    protected
  31. def findInput(node: ModuleNode[T], input: Activity): Activity

    Attributes
    protected
  32. def findModules(moduleType: String): ArrayBuffer[AbstractModule[_, _, T]]

    Definition Classes
    Container
  33. final def forward(input: Activity): Activity

    Takes an input object, and computes the corresponding output of the module.

    Takes an input object, and computes the corresponding output of the module. After a forward, the output state variable should have been updated to the new value.

    input

    input data

    returns

    output data

    Definition Classes
    AbstractModule
  34. val forwardGraph: DirectedGraph[AbstractModule[Activity, Activity, T]]

    Attributes
    protected
  35. val forwardNodes: Array[Node[AbstractModule[Activity, Activity, T]]]

    Attributes
    protected
  36. var forwardTime: Long

    Attributes
    protected
    Definition Classes
    AbstractModule
  37. def freeze(names: Array[String]): Graph.this.type

    set an array of layers that match the given names to be "freezed", i.

    set an array of layers that match the given names to be "freezed", i.e. their parameters(weight/bias, if exists) are not changed in training process

    names

    an array of layer names

    returns

    current graph model

  38. def freeze(names: String*): Graph.this.type

    freeze the module, i.

    freeze the module, i.e. their parameters(weight/bias, if exists) are not changed in training process if names is not empty, set an array of layers that match the given names to be "freezed",

    names

    an array of layer names

    returns

    current graph model

    Definition Classes
    ContainerAbstractModule
  39. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  40. def getClassTagNumerics(): (Array[ClassTag[_]], Array[TensorNumeric[_]])

    Definition Classes
    AbstractModule
  41. def getExtraParameter(): Array[Tensor[T]]

    Get extra parameter in this module.

    Get extra parameter in this module. Extra parameter means the trainable parameters beside weight and bias. Such as runningMean and runningVar in BatchNormalization.

    The subclass should override this method if it has some parameters besides weight and bias.

    returns

    an array of tensor

    Definition Classes
    ContainerAbstractModule
  42. def getForwardExecutions: Array[Node[AbstractModule[Activity, Activity, T]]]

    get forward executions, the dummy node will be filtered

    get forward executions, the dummy node will be filtered

    returns

  43. def getInput(node: Node[AbstractModule[Activity, Activity, T]], input: Activity): Activity

    Attributes
    protected
  44. def getName(): String

    Get the module name, default name is className@namePostfix

    Get the module name, default name is className@namePostfix

    returns

    Definition Classes
    AbstractModule
  45. def getNamePostfix: String

    Definition Classes
    AbstractModule
  46. def getNumericType(): TensorDataType

    returns

    Float or Double

    Definition Classes
    AbstractModule
  47. def getParameters(): (Tensor[T], Tensor[T])

    This method compact all parameters and gradients of the model into two tensors.

    This method compact all parameters and gradients of the model into two tensors. So it's easier to use optim method

    returns

    Definition Classes
    AbstractModule
  48. def getParametersTable(): Table

    This function returns a table contains ModuleName, the parameter names and parameter value in this module.

    This function returns a table contains ModuleName, the parameter names and parameter value in this module. The result table is a structure of Table(ModuleName -> Table(ParameterName -> ParameterValue)), and the type is Table[String, Table[String, Tensor[T]]].

    For example, get the weight of a module named conv1: table[Table]("conv1")[Tensor[T]]("weight").

    Custom modules should override this function if they have parameters.

    returns

    Table

    Definition Classes
    ContainerAbstractModule
  49. def getPrintName(): String

    Attributes
    protected
    Definition Classes
    AbstractModule
  50. def getScaleB(): Double

    Get the scale of gradientBias

    Get the scale of gradientBias

    Definition Classes
    AbstractModule
  51. def getScaleW(): Double

    Get the scale of gradientWeight

    Get the scale of gradientWeight

    Definition Classes
    AbstractModule
  52. def getSortedForwardExecutions: Array[Node[AbstractModule[Activity, Activity, T]]]

    Get forward executions, the dummy nodes and control dependency nodes will be filtered.

    Get forward executions, the dummy nodes and control dependency nodes will be filtered.

    This method will output a sorted executions. If the graph contains loop, it will throw an exception

    returns

  53. def getTimes(): Array[(AbstractModule[_ <: Activity, _ <: Activity, T], Long, Long)]

    Definition Classes
    GraphContainerAbstractModule
  54. def getWeightsBias(): Array[Tensor[T]]

    Get weight and bias for the module

    Get weight and bias for the module

    returns

    array of weights and bias

    Definition Classes
    AbstractModule
  55. var gradInput: Activity

    The cached gradient of activities.

    The cached gradient of activities. So we don't compute it again when need it

    Definition Classes
    AbstractModule
  56. def hasName: Boolean

    Definition Classes
    AbstractModule
  57. def hashCode(): Int

    Definition Classes
    ContainerAbstractModule → AnyRef → Any
  58. def inputs(first: (ModuleNode[T], Int), nodesWithIndex: (ModuleNode[T], Int)*): ModuleNode[T]

    Build graph: some other modules point to current module

    Build graph: some other modules point to current module

    first

    distinguish from another inputs when input parameter list is empty

    nodesWithIndex

    upstream module nodes and the output tensor index. The start index is 1.

    returns

    node containing current module

    Definition Classes
    AbstractModule
  59. def inputs(nodes: Array[ModuleNode[T]]): ModuleNode[T]

    Build graph: some other modules point to current module

    Build graph: some other modules point to current module

    nodes

    upstream module nodes in an array

    returns

    node containing current module

    Definition Classes
    AbstractModule
  60. def inputs(nodes: ModuleNode[T]*): ModuleNode[T]

    Build graph: some other modules point to current module

    Build graph: some other modules point to current module

    nodes

    upstream module nodes

    returns

    node containing current module

    Definition Classes
    AbstractModule
  61. val inputs: Seq[ModuleNode[T]]

    input nodes

  62. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  63. def isStopGradient(module: AbstractModule[_ <: Activity, _ <: Activity, T]): Boolean

    whether stop propagating gradInput back

    whether stop propagating gradInput back

    returns

    Attributes
    protected
  64. final def isTraining(): Boolean

    Definition Classes
    AbstractModule
  65. var line: String

    Attributes
    protected
    Definition Classes
    AbstractModule
  66. def loadModelWeights(srcModel: Module[Float], matchAll: Boolean = true): Graph.this.type

    copy weights from another model, mapping by layer name

    copy weights from another model, mapping by layer name

    srcModel

    model to copy from

    matchAll

    whether to match all layers' weights and bias,

    returns

    current module

    Definition Classes
    AbstractModule
  67. def loadWeights(weightPath: String, matchAll: Boolean = true): Graph.this.type

    load pretrained weights and bias to current module

    load pretrained weights and bias to current module

    weightPath

    file to store weights and bias

    matchAll

    whether to match all layers' weights and bias, if not, only load existing pretrained weights and bias

    returns

    current module

    Definition Classes
    AbstractModule
  68. val modules: ArrayBuffer[AbstractModule[Activity, Activity, T]]

    Definition Classes
    Container
  69. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  70. def node(name: String): ModuleNode[T]

    Return the corresponding node has the given name.

    Return the corresponding node has the given name. If the given name doesn't match any node, NoSuchElementException will be thrown

    name
    returns

  71. final def notify(): Unit

    Definition Classes
    AnyRef
  72. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  73. var output: Activity

    The cached output.

    The cached output. So we don't compute it again when need it

    Definition Classes
    AbstractModule
  74. def parameters(): (Array[Tensor[T]], Array[Tensor[T]])

    This function returns two arrays.

    This function returns two arrays. One for the weights and the other the gradients Custom modules should override this function if they have parameters

    returns

    (Array of weights, Array of grad)

    Definition Classes
    GraphContainerAbstractModule
  75. def predict(dataset: RDD[Sample[T]], batchSize: Int = 1, shareBuffer: Boolean = false): RDD[Activity]

    module predict, return the probability distribution

    module predict, return the probability distribution

    dataset

    dataset for prediction

    batchSize

    total batchSize for all partitions. if -1, default is 4 * partitionNumber of datatset

    shareBuffer

    whether to share same memory for each batch predict results

    Definition Classes
    AbstractModule
  76. def predictClass(dataset: RDD[Sample[T]], batchSize: Int = 1): RDD[Int]

    module predict, return the predict label

    module predict, return the predict label

    dataset

    dataset for prediction

    batchSize

    total batchSize for all partitions. if -1, default is 4 * partitionNumber of dataset

    Definition Classes
    AbstractModule
  77. def predictImage(imageFrame: ImageFrame, outputLayer: String = null, shareBuffer: Boolean = false, batchPerPartition: Int = 4, predictKey: String = ImageFeature.predict): ImageFrame

    model predict images, return imageFrame with predicted tensor

    model predict images, return imageFrame with predicted tensor

    imageFrame

    imageFrame that contains images

    outputLayer

    if outputLayer is not null, the output of layer that matches outputLayer will be used as predicted output

    shareBuffer

    whether to share same memory for each batch predict results

    batchPerPartition

    batch size per partition, default is 4

    predictKey

    key to store predicted result

    returns

    Definition Classes
    AbstractModule
  78. def quantize(): Module[T]

    Definition Classes
    AbstractModule
  79. def reset(): Unit

    Definition Classes
    GraphContainerAbstractModule
  80. def resetModules(): Unit

  81. def resetTimes(): Unit

    Definition Classes
    GraphContainerAbstractModule
  82. def saveCaffe(prototxtPath: String, modelPath: String, useV2: Boolean = true, overwrite: Boolean = false): Graph.this.type

    Definition Classes
    AbstractModule
  83. def saveDefinition(path: String, overWrite: Boolean = false): Graph.this.type

    Save this module definition to path.

    Save this module definition to path.

    path

    path to save module, local file system, HDFS and Amazon S3 is supported. HDFS path should be like "hdfs://[host]:[port]/xxx" Amazon S3 path should be like "s3a://bucket/xxx"

    overWrite

    if overwrite

    returns

    self

    Definition Classes
    AbstractModule
  84. def saveGraphTopology(logPath: String, backward: Boolean = false): Graph.this.type

    Save current model graph to a folder, which can be display in tensorboard by running tensorboard --logdir logPath

    Save current model graph to a folder, which can be display in tensorboard by running tensorboard --logdir logPath

    logPath
    backward

    Draw backward graph instead of forward

    returns

  85. def saveModule(path: String, weightPath: String = null, overWrite: Boolean = false): Graph.this.type

    Save this module to path with protobuf format

    Save this module to path with protobuf format

    path

    path to save module, local file system, HDFS and Amazon S3 is supported. HDFS path should be like "hdfs://[host]:[port]/xxx" Amazon S3 path should be like "s3a://bucket/xxx"

    weightPath

    where to store weight

    overWrite

    if overwrite

    returns

    self

    Definition Classes
    AbstractModule
  86. def saveTF(inputs: Seq[(String, Seq[Int])], path: String, byteOrder: ByteOrder = ByteOrder.LITTLE_ENDIAN, dataFormat: TensorflowDataFormat = TensorflowDataFormat.NHWC): Graph.this.type

    Definition Classes
    AbstractModule
  87. def saveTorch(path: String, overWrite: Boolean = false): Graph.this.type

    Definition Classes
    AbstractModule
  88. def saveWeights(path: String, overWrite: Boolean): Unit

    save weights and bias to file

    save weights and bias to file

    path

    file to save

    overWrite

    whether to overwrite or not

    Definition Classes
    AbstractModule
  89. var scaleB: Double

    Attributes
    protected
    Definition Classes
    AbstractModule
  90. var scaleW: Double

    The scale of gradient weight and gradient bias before gradParameters being accumulated.

    The scale of gradient weight and gradient bias before gradParameters being accumulated.

    Attributes
    protected
    Definition Classes
    AbstractModule
  91. def setExtraParameter(extraParam: Array[Tensor[T]]): Graph.this.type

    Set extra parameter to this module.

    Set extra parameter to this module. Extra parameter means the trainable parameters beside weight and bias. Such as runningMean and runningVar in BatchNormalization.

    returns

    this

    Definition Classes
    AbstractModule
  92. def setLine(line: String): Graph.this.type

    Definition Classes
    AbstractModule
  93. def setName(name: String): Graph.this.type

    Set the module name

    Set the module name

    name
    returns

    Definition Classes
    AbstractModule
  94. def setNamePostfix(namePostfix: String): Unit

    Definition Classes
    AbstractModule
  95. def setScaleB(b: Double): Graph.this.type

    Set the scale of gradientBias

    Set the scale of gradientBias

    b

    the value of the scale of gradientBias

    returns

    this

    Definition Classes
    ContainerAbstractModule
  96. def setScaleW(w: Double): Graph.this.type

    Set the scale of gradientWeight

    Set the scale of gradientWeight

    w

    the value of the scale of gradientWeight

    returns

    this

    Definition Classes
    ContainerAbstractModule
  97. def setWeightsBias(newWeights: Array[Tensor[T]]): Graph.this.type

    Set weight and bias for the module

    Set weight and bias for the module

    newWeights

    array of weights and bias

    returns

    Definition Classes
    AbstractModule
  98. def stopGradient(names: Array[String]): Graph.this.type

    stop the input gradient of layers that match the given names their input gradient are not computed.

    stop the input gradient of layers that match the given names their input gradient are not computed. And they will not contributed to the input gradient computation of layers that depend on them.

    names

    an array of layer names

    returns

    current graph model

  99. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  100. def toGraph(startNodes: ModuleNode[T]*): Graph[T]

    Generate graph module with start nodes

    Generate graph module with start nodes

    startNodes
    returns

    Definition Classes
    GraphAbstractModule
  101. def toString(): String

    Definition Classes
    AbstractModule → AnyRef → Any
  102. var train: Boolean

    Module status.

    Module status. It is useful for modules like dropout/batch normalization

    Attributes
    protected
    Definition Classes
    AbstractModule
  103. def training(): Graph.this.type

    Definition Classes
    ContainerAbstractModule
  104. def unFreeze(names: String*): Graph.this.type

    "unfreeze" module, i.

    "unfreeze" module, i.e. make the module parameters(weight/bias, if exists) to be trained(updated) in training process if names is not empty, unfreeze layers that match given names

    names

    array of module names to unFreeze

    Definition Classes
    ContainerAbstractModule
  105. def updateParameters(learningRate: T): Unit

    Definition Classes
    ContainerAbstractModule
  106. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  107. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  108. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  109. def zeroGradParameters(): Unit

    If the module has parameters, this will zero the accumulation of the gradients with respect to these parameters.

    If the module has parameters, this will zero the accumulation of the gradients with respect to these parameters. Otherwise, it does nothing.

    Definition Classes
    ContainerAbstractModule

Deprecated Value Members

  1. def save(path: String, overWrite: Boolean = false): Graph.this.type

    Save this module to path.

    Save this module to path.

    path

    path to save module, local file system, HDFS and Amazon S3 is supported. HDFS path should be like "hdfs://[host]:[port]/xxx" Amazon S3 path should be like "s3a://bucket/xxx"

    overWrite

    if overwrite

    returns

    self

    Definition Classes
    AbstractModule
    Annotations
    @deprecated
    Deprecated

    please use recommended saveModule(path, overWrite)

Inherited from Container[Activity, Activity, T]

Inherited from AbstractModule[Activity, Activity, T]

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped