org.apache.spark.ml

DLEstimator

class DLEstimator[T] extends DLEstimatorBase[DLEstimator[T], DLModel[T]] with DLParams[T]

DLEstimator helps to train a BigDL Model with the Spark ML Estimator/Transfomer pattern, thus Spark users can conveniently fit BigDL into Spark ML pipeline.

DLEstimator supports feature and label data in the format of Array[Double], Array[Float], org.apache.spark.mllib.linalg.{Vector, VectorUDT}, org.apache.spark.ml.linalg.{Vector, VectorUDT}, Double and Float.

User should specify the feature data dimensions and label data dimensions via the constructor parameters featureSize and labelSize respectively. Internally the feature and label data are converted to BigDL tensors, to further train a BigDL model efficiently.

For details usage, please refer to examples in package com.intel.analytics.bigdl.example.MLPipeline

Linear Supertypes
DLParams[T], HasBatchSize, VectorCompatibility, HasPredictionCol, HasFeaturesCol, DLEstimatorBase[DLEstimator[T], DLModel[T]], HasLabelCol, Estimator[DLModel[T]], PipelineStage, Logging, Params, Serializable, Serializable, Identifiable, AnyRef, Any
Known Subclasses
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. DLEstimator
  2. DLParams
  3. HasBatchSize
  4. VectorCompatibility
  5. HasPredictionCol
  6. HasFeaturesCol
  7. DLEstimatorBase
  8. HasLabelCol
  9. Estimator
  10. PipelineStage
  11. Logging
  12. Params
  13. Serializable
  14. Serializable
  15. Identifiable
  16. AnyRef
  17. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Instance Constructors

  1. new DLEstimator(model: Module[T], criterion: Criterion[T], featureSize: Array[Int], labelSize: Array[Int], uid: String = "DLEstimator")(implicit arg0: ClassTag[T], ev: TensorNumeric[T])

    model

    BigDL module to be optimized

    criterion

    BigDL criterion method

    featureSize

    The size (Tensor dimensions) of the feature data. e.g. an image may be with width * height = 28 * 28, featureSize = Array(28, 28).

    labelSize

    The size (Tensor dimensions) of the label data.

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def $[T](param: Param[T]): T

    Attributes
    protected
    Definition Classes
    Params
  5. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  6. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  7. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  8. final val batchSize: Param[Int]

    Definition Classes
    HasBatchSize
  9. final def clear(param: Param[_]): DLEstimator.this.type

    Attributes
    protected
    Definition Classes
    Params
  10. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  11. def copy(extra: ParamMap): DLEstimator[T]

    Definition Classes
    DLEstimator → DLEstimatorBase → Estimator → PipelineStage → Params
  12. def copyValues[T <: Params](to: T, extra: ParamMap): T

    Attributes
    protected
    Definition Classes
    Params
  13. val criterion: Criterion[T]

    BigDL criterion method

  14. final def defaultCopy[T <: Params](extra: ParamMap): T

    Attributes
    protected
    Definition Classes
    Params
  15. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  16. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  17. def explainParam(param: Param[_]): String

    Definition Classes
    Params
  18. def explainParams(): String

    Definition Classes
    Params
  19. final def extractParamMap(): ParamMap

    Definition Classes
    Params
  20. final def extractParamMap(extra: ParamMap): ParamMap

    Definition Classes
    Params
  21. val featureSize: Array[Int]

    The size (Tensor dimensions) of the feature data.

    The size (Tensor dimensions) of the feature data. e.g. an image may be with width * height = 28 * 28, featureSize = Array(28, 28).

  22. final val featuresCol: Param[String]

    Definition Classes
    HasFeaturesCol
  23. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  24. def fit(dataFrame: DataFrame): DLModel[T]

    Definition Classes
    DLEstimatorBase → Estimator
  25. def fit(dataset: DataFrame, paramMaps: Array[ParamMap]): Seq[DLModel[T]]

    Definition Classes
    Estimator
  26. def fit(dataset: DataFrame, paramMap: ParamMap): DLModel[T]

    Definition Classes
    Estimator
  27. def fit(dataset: DataFrame, firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DLModel[T]

    Definition Classes
    Estimator
    Annotations
    @varargs()
  28. final def get[T](param: Param[T]): Option[T]

    Definition Classes
    Params
  29. def getBatchSize: Int

    Definition Classes
    HasBatchSize
  30. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  31. def getConvertFunc(colType: DataType): (Row, Int) ⇒ Seq[AnyVal]

    Get conversion function to extract data from original DataFrame Default: 0

    Get conversion function to extract data from original DataFrame Default: 0

    Attributes
    protected
    Definition Classes
    DLParams
  32. final def getDefault[T](param: Param[T]): Option[T]

    Definition Classes
    Params
  33. final def getFeaturesCol: String

    Definition Classes
    HasFeaturesCol
  34. final def getLabelCol: String

    Definition Classes
    HasLabelCol
  35. def getLearningRate: Double

    Definition Classes
    DLParams
  36. def getLearningRateDecay: Double

    Definition Classes
    DLParams
  37. def getMaxEpoch: Int

    Definition Classes
    DLParams
  38. def getOptimMethod: OptimMethod[T]

    Definition Classes
    DLParams
  39. final def getOrDefault[T](param: Param[T]): T

    Definition Classes
    Params
  40. def getParam(paramName: String): Param[Any]

    Definition Classes
    Params
  41. final def getPredictionCol: String

    Definition Classes
    HasPredictionCol
  42. def getVectorSeq(row: Row, colType: DataType, index: Int): Seq[AnyVal]

    Definition Classes
    VectorCompatibility
  43. final def hasDefault[T](param: Param[T]): Boolean

    Definition Classes
    Params
  44. def hasParam(paramName: String): Boolean

    Definition Classes
    Params
  45. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  46. def internalFit(dataFrame: DataFrame): DLModel[T]

    Attributes
    protected
    Definition Classes
    DLEstimator → DLEstimatorBase
  47. final def isDefined(param: Param[_]): Boolean

    Definition Classes
    Params
  48. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  49. final def isSet(param: Param[_]): Boolean

    Definition Classes
    Params
  50. def isTraceEnabled(): Boolean

    Attributes
    protected
    Definition Classes
    Logging
  51. final val labelCol: Param[String]

    Definition Classes
    HasLabelCol
  52. val labelSize: Array[Int]

    The size (Tensor dimensions) of the label data.

  53. final val learningRate: DoubleParam

    learning rate for the optimizer in the DLEstimator.

    learning rate for the optimizer in the DLEstimator. Default: 0.001

    Definition Classes
    DLParams
  54. final val learningRateDecay: DoubleParam

    learning rate decay for each iteration.

    learning rate decay for each iteration. Default: 0

    Definition Classes
    DLParams
  55. def log: Logger

    Attributes
    protected
    Definition Classes
    Logging
  56. def logDebug(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  57. def logDebug(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  58. def logError(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  59. def logError(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  60. def logInfo(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  61. def logInfo(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  62. def logName: String

    Attributes
    protected
    Definition Classes
    Logging
  63. def logTrace(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  64. def logTrace(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  65. def logWarning(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  66. def logWarning(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  67. final val maxEpoch: IntParam

    number of max Epoch for the training, an epoch refers to a traverse over the training data Default: 100

    number of max Epoch for the training, an epoch refers to a traverse over the training data Default: 100

    Definition Classes
    DLParams
  68. val model: Module[T]

    BigDL module to be optimized

  69. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  70. final def notify(): Unit

    Definition Classes
    AnyRef
  71. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  72. final val optimMethod: Param[OptimMethod[T]]

    optimization method to be used.

    optimization method to be used. BigDL supports many optimization methods like Adam, SGD and LBFGS. Refer to package com.intel.analytics.bigdl.optim for all the options. Default: SGD

    Definition Classes
    DLParams
  73. lazy val params: Array[Param[_]]

    Definition Classes
    Params
  74. final val predictionCol: Param[String]

    Definition Classes
    HasPredictionCol
  75. final def set(paramPair: ParamPair[_]): DLEstimator.this.type

    Attributes
    protected
    Definition Classes
    Params
  76. final def set(param: String, value: Any): DLEstimator.this.type

    Attributes
    protected
    Definition Classes
    Params
  77. final def set[T](param: Param[T], value: T): DLEstimator.this.type

    Attributes
    protected
    Definition Classes
    Params
  78. def setBatchSize(value: Int): DLEstimator.this.type

  79. final def setDefault(paramPairs: ParamPair[_]*): DLEstimator.this.type

    Attributes
    protected
    Definition Classes
    Params
  80. final def setDefault[T](param: Param[T], value: T): DLEstimator.this.type

    Attributes
    protected
    Definition Classes
    Params
  81. def setFeaturesCol(featuresColName: String): DLEstimator.this.type

  82. def setLabelCol(labelColName: String): DLEstimator.this.type

  83. def setLearningRate(value: Double): DLEstimator.this.type

  84. def setLearningRateDecay(value: Double): DLEstimator.this.type

  85. def setMaxEpoch(value: Int): DLEstimator.this.type

  86. def setOptimMethod(value: OptimMethod[T]): DLEstimator.this.type

  87. def setPredictionCol(value: String): DLEstimator.this.type

  88. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  89. def toString(): String

    Definition Classes
    Identifiable → AnyRef → Any
  90. def transformSchema(schema: StructType): StructType

    Definition Classes
    DLEstimator → PipelineStage
  91. def transformSchema(schema: StructType, logging: Boolean): StructType

    Attributes
    protected
    Definition Classes
    PipelineStage
    Annotations
    @DeveloperApi()
  92. val uid: String

    Definition Classes
    DLEstimator → Identifiable
  93. val validVectorTypes: Seq[VectorUDT]

    Definition Classes
    VectorCompatibility
  94. def validateDataType(schema: StructType, colName: String): Unit

    Validate if feature and label columns are of supported data types.

    Validate if feature and label columns are of supported data types. Default: 0

    Attributes
    protected
    Definition Classes
    DLParams
  95. def validateParams(): Unit

    Definition Classes
    Params
  96. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  97. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  98. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  99. def wrapBigDLModel(m: Module[T], featureSize: Array[Int]): DLModel[T]

    sub classes can extend the method and return required model for different transform tasks

    sub classes can extend the method and return required model for different transform tasks

    Attributes
    protected

Inherited from DLParams[T]

Inherited from HasBatchSize

Inherited from VectorCompatibility

Inherited from HasPredictionCol

Inherited from HasFeaturesCol

Inherited from DLEstimatorBase[DLEstimator[T], DLModel[T]]

Inherited from HasLabelCol

Inherited from Estimator[DLModel[T]]

Inherited from PipelineStage

Inherited from Logging

Inherited from Params

Inherited from Serializable

Inherited from Serializable

Inherited from Identifiable

Inherited from AnyRef

Inherited from Any

Ungrouped