com.intel.analytics.bigdl.dataset

SparseMiniBatch

class SparseMiniBatch[T] extends ArrayTensorMiniBatch[T]

SparseMiniBatch is a MiniBatch type for TensorSample. And SparseMiniBatch could deal with SparseTensors in TensorSample.

T

Numeric type

Linear Supertypes
ArrayTensorMiniBatch[T], MiniBatch[T], Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. SparseMiniBatch
  2. ArrayTensorMiniBatch
  3. MiniBatch
  4. Serializable
  5. Serializable
  6. AnyRef
  7. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Instance Constructors

  1. new SparseMiniBatch(inputData: Array[Tensor[T]], targetData: Array[Tensor[T]])(implicit arg0: ClassTag[T], ev: TensorNumeric[T])

    inputData

    a set of input tensor

    targetData

    a set of target tensor

    ev

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  7. var batchSize: Int

    Attributes
    protected
    Definition Classes
    ArrayTensorMiniBatch
  8. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  9. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  10. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  11. val featurePadding: Option[Array[Tensor[T]]]

    Definition Classes
    ArrayTensorMiniBatch
  12. val featurePaddingStrategy: PaddingStrategy

    Definition Classes
    ArrayTensorMiniBatch
  13. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  14. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  15. def getInput(): Activity

    Get input in this MiniBatch.

    Get input in this MiniBatch.

    returns

    input Activity

    Definition Classes
    SparseMiniBatch → ArrayTensorMiniBatch → MiniBatch
  16. def getTarget(): Activity

    Get target in this MiniBatch

    Get target in this MiniBatch

    returns

    target Activity

    Definition Classes
    SparseMiniBatch → ArrayTensorMiniBatch → MiniBatch
  17. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  18. def init(features: Array[Tensor[T]], labels: Array[Tensor[T]]): Unit

  19. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  20. val labelPadding: Option[Array[Tensor[T]]]

    Definition Classes
    ArrayTensorMiniBatch
  21. val labelPaddingStrategy: PaddingStrategy

    Definition Classes
    ArrayTensorMiniBatch
  22. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  23. final def notify(): Unit

    Definition Classes
    AnyRef
  24. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  25. def set(samples: Seq[Sample[T]])(implicit ev: TensorNumeric[T]): SparseMiniBatch.this.type

    Replace the original content of the miniBatch with a set of Sample.

    Replace the original content of the miniBatch with a set of Sample.

    samples

    a set of Sample

    returns

    self

    Definition Classes
    SparseMiniBatch → ArrayTensorMiniBatch → MiniBatch
  26. def size(): Int

    Get the number of samples in this MiniBatch

    Get the number of samples in this MiniBatch

    returns

    size How many samples in this MiniBatch

    Definition Classes
    ArrayTensorMiniBatch → MiniBatch
  27. def slice(offset: Int, length: Int): MiniBatch[T]

    Slice this MiniBatch to a smaller MiniBatch with offset and length

    Slice this MiniBatch to a smaller MiniBatch with offset and length

    offset

    offset, counted from 1

    length

    length

    returns

    A smaller MiniBatch

    Definition Classes
    ArrayTensorMiniBatch → MiniBatch
  28. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  29. def toString(): String

    Definition Classes
    AnyRef → Any
  30. var unlabeled: Boolean

    Attributes
    protected
    Definition Classes
    ArrayTensorMiniBatch
  31. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  32. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  33. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Deprecated Value Members

  1. def data(): Tensor[T]

    An deprecated function for single-input/single-target MiniBatch.

    An deprecated function for single-input/single-target MiniBatch. You don't need to override this, because we have add a default implement to throw exception.

    Definition Classes
    ArrayTensorMiniBatch → MiniBatch
    Annotations
    @deprecated
    Deprecated

    (Since version 0.2.0) Old interface

  2. def labels(): Tensor[T]

    An deprecated function for single-input/single-target MiniBatch.

    An deprecated function for single-input/single-target MiniBatch. You don't need to override this, because we have add a default implement to throw exception.

    Definition Classes
    ArrayTensorMiniBatch → MiniBatch
    Annotations
    @deprecated
    Deprecated

    (Since version 0.2.0) Old interface

Inherited from ArrayTensorMiniBatch[T]

Inherited from MiniBatch[T]

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped