com.intel.analytics.bigdl.models.utils

ModelBroadcast

class ModelBroadcast[T] extends Serializable

ModelBroadcast is used to broadcast model.

Note: If you want to use this to broadcast training model, please use value(true) to get the model. And before broadcasting please make sure the model's parameter is compacted.

T

data type

Linear Supertypes
Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. ModelBroadcast
  2. Serializable
  3. Serializable
  4. AnyRef
  5. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Instance Constructors

  1. new ModelBroadcast(applyProtoBuffer: Boolean = false)(implicit arg0: ClassTag[T], ev: TensorNumeric[T])

    applyProtoBuffer

    it will use proto buffer serialization for broadcasting if set true

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  7. def broadcast(sc: SparkContext, model: Module[T]): ModelBroadcast.this.type

    broadcast the model first get and clear Const values from the model then get and clear the weight and bias parameters from the model finally broadcast Const values, the parameters and model(without parameters) separately

    broadcast the model first get and clear Const values from the model then get and clear the weight and bias parameters from the model finally broadcast Const values, the parameters and model(without parameters) separately

    sc

    SparkContext

    model

    model to broadcast

    returns

    this

  8. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  9. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  10. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  11. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  12. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  13. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  14. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  15. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  16. final def notify(): Unit

    Definition Classes
    AnyRef
  17. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  18. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  19. def toString(): String

    Definition Classes
    AnyRef → Any
  20. def value(initGradient: Boolean = false): Module[T]

    get the broadcast model put the weight and bias back to the model

    get the broadcast model put the weight and bias back to the model

    initGradient

    if init gradParameter.

    returns

    model

  21. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  22. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  23. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped