com.intel.analytics.bigdl.nn

Nms

class Nms extends Serializable

Non-Maximum Suppression (nms) for Object Detection The goal of nms is to solve the problem that groups of several detections near the real location, ideally obtaining only one detection per object

Linear Supertypes
Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. Nms
  2. Serializable
  3. Serializable
  4. AnyRef
  5. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Instance Constructors

  1. new Nms()

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  7. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  8. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  9. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  10. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  11. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  12. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  13. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  14. def isKeepCurIndex(boxArray: Array[Float], offset: Int, rowLength: Int, areas: Array[Float], curInd: Int, adaptiveThresh: Float, indices: Array[Int], indexLength: Int, normalized: Boolean): Boolean

  15. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  16. def nms(scores: Tensor[Float], boxes: Tensor[Float], thresh: Float, indices: Array[Int], sorted: Boolean = false): Int

    1.

    1. first sort the scores from highest to lowest and get indices 2. for the bbox of first index, get the overlap between this box and the remaining bboxes put the first index to result buffer 3. update the indices by keeping those bboxes with overlap less than thresh 4. repeat 2 and 3 until the indices are empty

    scores

    score tensor

    boxes

    box tensor, with the size N*4

    thresh

    overlap thresh

    indices

    buffer to store indices after nms

    sorted

    whether the scores are sorted

    returns

    the length of indices after nms

  17. def nmsFast(scores: Tensor[Float], boxes: Tensor[Float], nmsThresh: Float, scoreThresh: Float, indices: Array[Int], topk: Int = 1, eta: Float = 1, normalized: Boolean = true): Int

  18. final def notify(): Unit

    Definition Classes
    AnyRef
  19. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  20. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  21. def toString(): String

    Definition Classes
    AnyRef → Any
  22. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  23. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  24. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped