com.intel.analytics.bigdl.nn.ops

TensorOp

class TensorOp[T] extends Operation[Tensor[T], Tensor[T], T]

TensorOp is an Operation with Tensor[T]-formatted input and output, which provides shortcuts to build Operations for tensor transformation by closures.

TensorOp will make a deep copy of input Tensor before transformation, so transformation will take no side effect. For now, SparseTensors are not supported.

Chained feature is supported in TensorOp. And common tensor actions are provided with a chained style.

For instance:

one case:
   val (transformer1, transformer2, transformer3) = ...
   val (op1, op2, op3) = (TensorOp[Float](transformer1), .., ..)
   val op = op1 -> op2 -> op3
     `equals`
   val op = TensorOp[Float]((t: Tensor[Float], ev: TensorNumeric[Float]) => {
     transformer3(transformer2(transformer1(t, ev), ev), ev)
    })

another case:
   val op = (TensorOp[Float]() * 2.3f + 1.23f) / 1.11f - 0.66f
     `equals`
   val transformer = (t: Tensor[T], _) => t.mul(2.3f).add(1.23f).div(1.11f).sub(0.66f)
   val op = TensorOp[Float](transformer)
T

Numeric type

Linear Supertypes
Operation[Tensor[T], Tensor[T], T], AbstractModule[Tensor[T], Tensor[T], T], InferShape, Serializable, Serializable, AnyRef, scala.Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. TensorOp
  2. Operation
  3. AbstractModule
  4. InferShape
  5. Serializable
  6. Serializable
  7. AnyRef
  8. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: scala.Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def *(tensor: Tensor[T]): TensorOp[T]

    build a TensorOp to do element-wise multiplication

    build a TensorOp to do element-wise multiplication

    tensor

    Tensor[T]

    returns

    TensorOp[T]

  5. final def *(value: T): TensorOp[T]

    build a TensorOp to do element-wise f(x) = a * x

    build a TensorOp to do element-wise f(x) = a * x

    value

    T a

    returns

    TensorOp[T]

  6. final def **(n: T): TensorOp[T]

    build a TensorOp to do element-wise f(x) = x ^ n

    build a TensorOp to do element-wise f(x) = x ^ n

    n

    the order of power

    returns

    TensorOp[T]

  7. final def +(tensor: Tensor[T]): TensorOp[T]

    append additional TensorOp to do element-wise tensor addition

    append additional TensorOp to do element-wise tensor addition

    tensor

    Tensor[T]

    returns

    TensorOp[T]

  8. final def +(value: T): TensorOp[T]

    append additional TensorOp to do element-wise f(x) = x + a

    append additional TensorOp to do element-wise f(x) = x + a

    value

    T a

    returns

    TensorOp[T]

  9. final def -(tensor: Tensor[T]): TensorOp[T]

    build a TensorOp to do element-wise tensor subtraction

    build a TensorOp to do element-wise tensor subtraction

    tensor

    Tensor[T]

    returns

    TensorOp[T]

  10. final def -(value: T): TensorOp[T]

    build a TensorOp to do element-wise f(x) = x - a

    build a TensorOp to do element-wise f(x) = x - a

    value

    T a

    returns

    TensorOp[T]

  11. final def ->(next: TensorOp[T]): TensorOp[T]

  12. final def /(tensor: Tensor[T]): TensorOp[T]

    build a TensorOp to do element-wise division

    build a TensorOp to do element-wise division

    tensor

    Tensor[T]

    returns

    TensorOp[T]

  13. final def /(value: T): TensorOp[T]

    build a TensorOp to do element-wise f(x) = x / a

    build a TensorOp to do element-wise f(x) = x / a

    value

    T a

    returns

    TensorOp[T]

  14. final def ==(value: T): TensorOp[T]

    build a TensorOp to do element-wise f(x) = if (x==a) 1; else 0

    build a TensorOp to do element-wise f(x) = if (x==a) 1; else 0

    value

    T a

    returns

    TensorOp[T]

  15. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  16. final def ==(arg0: scala.Any): Boolean

    Definition Classes
    Any
  17. final def >=(value: Double): TensorOp[T]

    build a TensorOp to do element-wise f(x) = if (x>=a) 1; else 0

    build a TensorOp to do element-wise f(x) = if (x>=a) 1; else 0

    value

    Double a

    returns

    TensorOp[T]

  18. final def abs: TensorOp[T]

    build a TensorOp to do element-wise f(x) = |x|

    build a TensorOp to do element-wise f(x) = |x|

    returns

    TensorOp[T]

  19. def accGradParameters(input: Tensor[T], gradOutput: Tensor[T]): Unit

    Computing the gradient of the module with respect to its own parameters.

    Computing the gradient of the module with respect to its own parameters. Many modules do not perform this step as they do not have any parameters. The state variable name for the parameters is module dependent. The module is expected to accumulate the gradients with respect to the parameters in some variable.

    input
    gradOutput

    Definition Classes
    AbstractModule
  20. def apply(name: String): Option[AbstractModule[Activity, Activity, T]]

    Find a module with given name.

    Find a module with given name. If there is no module with given name, it will return None. If there are multiple modules with the given name, an exception will be thrown.

    name
    returns

    Definition Classes
    AbstractModule
  21. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  22. final def backward(input: Tensor[T], gradOutput: Tensor[T]): Tensor[T]

    Performs a back-propagation step through the module, with respect to the given input.

    Performs a back-propagation step through the module, with respect to the given input. In general this method makes the assumption forward(input) has been called before, with the same input. This is necessary for optimization reasons. If you do not respect this rule, backward() will compute incorrect gradients.

    input

    input data

    gradOutput

    gradient of next layer

    returns

    gradient corresponding to input data

    Definition Classes
    OperationAbstractModule
  23. var backwardTime: Long

    Attributes
    protected
    Definition Classes
    AbstractModule
  24. final def ceil: TensorOp[T]

    build a TensorOp to do element-wise ceil

    build a TensorOp to do element-wise ceil

    returns

    TensorOp[T]

  25. def clearState(): TensorOp.this.type

    Clear cached activities to save storage space or network bandwidth.

    Clear cached activities to save storage space or network bandwidth. Note that we use Tensor.set to keep some information like tensor share

    The subclass should override this method if it allocate some extra resource, and call the super.clearState in the override method

    returns

    Definition Classes
    AbstractModule
  26. final def clone(deepCopy: Boolean): AbstractModule[Tensor[T], Tensor[T], T]

    Clone the module, deep or shallow copy

    Clone the module, deep or shallow copy

    deepCopy
    returns

    Definition Classes
    AbstractModule
  27. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  28. final def cloneModule(): AbstractModule[Tensor[T], Tensor[T], T]

    Clone the model

    Clone the model

    returns

    Definition Classes
    AbstractModule
  29. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  30. def equals(other: scala.Any): Boolean

    Definition Classes
    AbstractModule → AnyRef → Any
  31. final def evaluate(dataSet: LocalDataSet[MiniBatch[T]], vMethods: Array[_ <: ValidationMethod[T]]): Array[(ValidationResult, ValidationMethod[T])]

    use ValidationMethod to evaluate module on the given local dataset

    use ValidationMethod to evaluate module on the given local dataset

    dataSet
    vMethods
    returns

    Definition Classes
    AbstractModule
  32. final def evaluate(dataset: RDD[Sample[T]], vMethods: Array[_ <: ValidationMethod[T]], batchSize: Option[Int] = None): Array[(ValidationResult, ValidationMethod[T])]

    use ValidationMethod to evaluate module on the given rdd dataset

    use ValidationMethod to evaluate module on the given rdd dataset

    dataset

    dataset for test

    vMethods

    validation methods

    batchSize

    total batchsize of all partitions, optional param and default 4 * partitionNum of dataset

    returns

    Definition Classes
    AbstractModule
  33. def evaluate(): TensorOp.this.type

    Set the module to evaluate mode

    Set the module to evaluate mode

    returns

    Definition Classes
    AbstractModule
  34. final def evaluateImage(imageFrame: ImageFrame, vMethods: Array[_ <: ValidationMethod[T]], batchSize: Option[Int] = None): Array[(ValidationResult, ValidationMethod[T])]

    use ValidationMethod to evaluate module on the given ImageFrame

    use ValidationMethod to evaluate module on the given ImageFrame

    imageFrame

    ImageFrame for valudation

    vMethods

    validation methods

    batchSize

    total batch size of all partitions

    returns

    Definition Classes
    AbstractModule
  35. final def exp: TensorOp[T]

    build a TensorOp to do element-wise f(x) = exp(x)

    build a TensorOp to do element-wise f(x) = exp(x)

    returns

    TensorOp[T]

  36. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  37. final def floor: TensorOp[T]

    build a TensorOp to do element-wise floor

    build a TensorOp to do element-wise floor

    returns

    TensorOp[T]

  38. final def forward(input: Tensor[T]): Tensor[T]

    Takes an input object, and computes the corresponding output of the module.

    Takes an input object, and computes the corresponding output of the module. After a forward, the output state variable should have been updated to the new value.

    input

    input data

    returns

    output data

    Definition Classes
    AbstractModule
  39. var forwardTime: Long

    Attributes
    protected
    Definition Classes
    AbstractModule
  40. def freeze(names: String*): TensorOp.this.type

    freeze the module, i.

    freeze the module, i.e. their parameters(weight/bias, if exists) are not changed in training process if names is not empty, set an array of layers that match the given names to be "freezed",

    names

    an array of layer names

    returns

    current graph model

    Definition Classes
    AbstractModule
  41. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  42. def getExtraParameter(): Array[Tensor[T]]

    Get extra parameter in this module.

    Get extra parameter in this module. Extra parameter means the trainable parameters beside weight and bias. Such as runningMean and runningVar in BatchNormalization.

    The subclass should override this method if it has some parameters besides weight and bias.

    returns

    an array of tensor

    Definition Classes
    AbstractModule
  43. final def getInputShape(): Shape

    Return the inputShape for the current Layer and the first dim is batch.

    Return the inputShape for the current Layer and the first dim is batch.

    Definition Classes
    InferShape
  44. final def getName(): String

    Get the module name, default name is className@namePostfix

    Get the module name, default name is className@namePostfix

    returns

    Definition Classes
    AbstractModule
  45. final def getNumericType(): TensorDataType

    Get numeric type of module parameters

    Get numeric type of module parameters

    returns

    Definition Classes
    AbstractModule
  46. final def getOutputShape(): Shape

    Return the outputShape for the current Layer and the first dim is batch.

    Return the outputShape for the current Layer and the first dim is batch.

    Definition Classes
    InferShape
  47. def getParametersTable(): Table

    This function returns a table contains ModuleName, the parameter names and parameter value in this module.

    This function returns a table contains ModuleName, the parameter names and parameter value in this module.

    The result table is a structure of Table(ModuleName -> Table(ParameterName -> ParameterValue)), and the type is Table[String, Table[String, Tensor[T]]].

    For example, get the weight of a module named conv1: table[Table]("conv1")[Tensor[T]]("weight").

    The names of the parameters follow such convention:

    1. If there's one parameter, the parameter is named as "weight", the gradient is named as "gradWeight"

    2. If there're two parameters, the first parameter is named as "weight", the first gradient is named as "gradWeight"; the second parameter is named as "bias", the seconcd gradient is named as "gradBias"

    3. If there're more parameters, the weight is named as "weight" with a seq number as suffix, the gradient is named as "gradient" with a seq number as suffix

    Custom modules should override this function the default impl if the convention doesn't meet the requirement.

    returns

    Table

    Definition Classes
    AbstractModule
  48. final def getPrintName(): String

    Attributes
    protected
    Definition Classes
    AbstractModule
  49. final def getScaleB(): Double

    Get the scale of gradientBias

    Get the scale of gradientBias

    Definition Classes
    AbstractModule
  50. final def getScaleW(): Double

    Get the scale of gradientWeight

    Get the scale of gradientWeight

    Definition Classes
    AbstractModule
  51. def getTimes(): Array[(AbstractModule[_ <: Activity, _ <: Activity, T], Long, Long)]

    Get the forward/backward cost time for the module or its submodules

    Get the forward/backward cost time for the module or its submodules

    returns

    Definition Classes
    AbstractModule
  52. final def getTimesGroupByModuleType(): Array[(String, Long, Long)]

    Get the forward/backward cost time for the module or its submodules and group by module type.

    Get the forward/backward cost time for the module or its submodules and group by module type.

    returns

    (module type name, forward time, backward time)

    Definition Classes
    AbstractModule
  53. final def getWeightsBias(): Array[Tensor[T]]

    Get weight and bias for the module

    Get weight and bias for the module

    returns

    array of weights and bias

    Definition Classes
    AbstractModule
  54. var gradInput: Tensor[T]

    The cached gradient of activities.

    The cached gradient of activities. So we don't compute it again when need it

    Definition Classes
    AbstractModule
  55. final def hasName: Boolean

    Whether user set a name to the module before

    Whether user set a name to the module before

    returns

    Definition Classes
    AbstractModule
  56. def hashCode(): Int

    Definition Classes
    AbstractModule → AnyRef → Any
  57. def inputs(first: (ModuleNode[T], Int), nodesWithIndex: (ModuleNode[T], Int)*): ModuleNode[T]

    Build graph: some other modules point to current module

    Build graph: some other modules point to current module

    first

    distinguish from another inputs when input parameter list is empty

    nodesWithIndex

    upstream module nodes and the output tensor index. The start index is 1.

    returns

    node containing current module

    Definition Classes
    AbstractModule
  58. def inputs(nodes: Array[ModuleNode[T]]): ModuleNode[T]

    Build graph: some other modules point to current module

    Build graph: some other modules point to current module

    nodes

    upstream module nodes in an array

    returns

    node containing current module

    Definition Classes
    AbstractModule
  59. def inputs(nodes: ModuleNode[T]*): ModuleNode[T]

    Build graph: some other modules point to current module

    Build graph: some other modules point to current module

    nodes

    upstream module nodes

    returns

    node containing current module

    Definition Classes
    AbstractModule
  60. final def inv: TensorOp[T]

    build a TensorOp to do element-wise f(x) = 1 / x

    build a TensorOp to do element-wise f(x) = 1 / x

    returns

    TensorOp[T]

  61. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  62. final def isTraining(): Boolean

    Check if the model is in training mode

    Check if the model is in training mode

    returns

    Definition Classes
    AbstractModule
  63. var line: String

    Attributes
    protected
    Definition Classes
    AbstractModule
  64. final def loadModelWeights(srcModel: Module[Float], matchAll: Boolean = true): TensorOp.this.type

    copy weights from another model, mapping by layer name

    copy weights from another model, mapping by layer name

    srcModel

    model to copy from

    matchAll

    whether to match all layers' weights and bias,

    returns

    current module

    Definition Classes
    AbstractModule
  65. final def loadWeights(weightPath: String, matchAll: Boolean = true): TensorOp.this.type

    load pretrained weights and bias to current module

    load pretrained weights and bias to current module

    weightPath

    file to store weights and bias

    matchAll

    whether to match all layers' weights and bias, if not, only load existing pretrained weights and bias

    returns

    current module

    Definition Classes
    AbstractModule
  66. final def log: TensorOp[T]

    build a TensorOp to do element-wise f(x) = log(x)

    build a TensorOp to do element-wise f(x) = log(x)

    returns

    TensorOp[T]

  67. final def log1p: TensorOp[T]

    build a TensorOp to do element-wise f(x) = log(x + 1)

    build a TensorOp to do element-wise f(x) = log(x + 1)

    returns

    TensorOp[T]

  68. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  69. final def neg: TensorOp[T]

    build a TensorOp to do element-wise f(x) = -x

    build a TensorOp to do element-wise f(x) = -x

    returns

    TensorOp[T]

  70. final def notify(): Unit

    Definition Classes
    AnyRef
  71. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  72. var output: Tensor[T]

    The cached output.

    The cached output. So we don't compute it again when need it

    Definition Classes
    AbstractModule
  73. def parameters(): (Array[Tensor[T]], Array[Tensor[T]])

    This function returns two arrays.

    This function returns two arrays. One for the weights and the other the gradients Custom modules should override this function if they have parameters

    returns

    (Array of weights, Array of grad)

    Definition Classes
    AbstractModule
  74. final def predict(dataset: RDD[Sample[T]], batchSize: Int = 1, shareBuffer: Boolean = false): RDD[Activity]

    module predict, return the probability distribution

    module predict, return the probability distribution

    dataset

    dataset for prediction

    batchSize

    total batchSize for all partitions. if -1, default is 4 * partitionNumber of datatset

    shareBuffer

    whether to share same memory for each batch predict results

    Definition Classes
    AbstractModule
  75. final def predictClass(dataset: RDD[Sample[T]], batchSize: Int = 1): RDD[Int]

    module predict, return the predict label

    module predict, return the predict label

    dataset

    dataset for prediction

    batchSize

    total batchSize for all partitions. if -1, default is 4 * partitionNumber of dataset

    Definition Classes
    AbstractModule
  76. final def predictImage(imageFrame: ImageFrame, outputLayer: String = null, shareBuffer: Boolean = false, batchPerPartition: Int = 4, predictKey: String = ImageFeature.predict, featurePaddingParam: Option[PaddingParam[T]] = None): ImageFrame

    model predict images, return imageFrame with predicted tensor, if you want to call predictImage multiple times, it is recommended to use Predictor for DistributedImageFrame or LocalPredictor for LocalImageFrame

    model predict images, return imageFrame with predicted tensor, if you want to call predictImage multiple times, it is recommended to use Predictor for DistributedImageFrame or LocalPredictor for LocalImageFrame

    imageFrame

    imageFrame that contains images

    outputLayer

    if outputLayer is not null, the output of layer that matches outputLayer will be used as predicted output

    shareBuffer

    whether to share same memory for each batch predict results

    batchPerPartition

    batch size per partition, default is 4

    predictKey

    key to store predicted result

    featurePaddingParam

    featurePaddingParam if the inputs have variant size

    returns

    Definition Classes
    AbstractModule
  77. def processInputs(first: (ModuleNode[T], Int), nodesWithIndex: (ModuleNode[T], Int)*): ModuleNode[T]

    Attributes
    protected
    Definition Classes
    AbstractModule
  78. def processInputs(nodes: Seq[ModuleNode[T]]): ModuleNode[T]

    Attributes
    protected
    Definition Classes
    AbstractModule
  79. final def quantize(): Module[T]

    Quantize this module, which reduces the precision of the parameter.

    Quantize this module, which reduces the precision of the parameter. Get a higher speed with a little accuracy cost.

    returns

    Definition Classes
    AbstractModule
  80. def release(): Unit

    if the model contains native resources such as aligned memory, we should release it by manual.

    if the model contains native resources such as aligned memory, we should release it by manual. JVM GC can't release them reliably.

    Definition Classes
    AbstractModule
  81. def reset(): Unit

    Reset module parameters, which is re-initialize the parameter with given initMethod

    Reset module parameters, which is re-initialize the parameter with given initMethod

    Definition Classes
    AbstractModule
  82. def resetTimes(): Unit

    Reset the forward/backward record time for the module or its submodules

    Reset the forward/backward record time for the module or its submodules

    returns

    Definition Classes
    AbstractModule
  83. final def saveCaffe(prototxtPath: String, modelPath: String, useV2: Boolean = true, overwrite: Boolean = false): TensorOp.this.type

    Save this module to path in caffe readable format

    Save this module to path in caffe readable format

    prototxtPath
    modelPath
    useV2
    overwrite
    returns

    Definition Classes
    AbstractModule
  84. final def saveDefinition(path: String, overWrite: Boolean = false): TensorOp.this.type

    Save this module definition to path.

    Save this module definition to path.

    path

    path to save module, local file system, HDFS and Amazon S3 is supported. HDFS path should be like "hdfs://[host]:[port]/xxx" Amazon S3 path should be like "s3a://bucket/xxx"

    overWrite

    if overwrite

    returns

    self

    Definition Classes
    AbstractModule
  85. final def saveModule(path: String, weightPath: String = null, overWrite: Boolean = false): TensorOp.this.type

    Save this module to path with protobuf format

    Save this module to path with protobuf format

    path

    path to save module, local file system, HDFS and Amazon S3 is supported. HDFS path should be like "hdfs://[host]:[port]/xxx" Amazon S3 path should be like "s3a://bucket/xxx"

    weightPath

    where to store weight

    overWrite

    if overwrite

    returns

    self

    Definition Classes
    AbstractModule
  86. final def saveTF(inputs: Seq[(String, Seq[Int])], path: String, byteOrder: ByteOrder = ByteOrder.LITTLE_ENDIAN, dataFormat: TensorflowDataFormat = TensorflowDataFormat.NHWC): TensorOp.this.type

    Save this module to path in tensorflow readable format

    Save this module to path in tensorflow readable format

    inputs
    path
    byteOrder
    dataFormat
    returns

    Definition Classes
    AbstractModule
  87. final def saveTorch(path: String, overWrite: Boolean = false): TensorOp.this.type

    Save this module to path in torch7 readable format

    Save this module to path in torch7 readable format

    path
    overWrite
    returns

    Definition Classes
    AbstractModule
  88. final def saveWeights(path: String, overWrite: Boolean): Unit

    save weights and bias to file

    save weights and bias to file

    path

    file to save

    overWrite

    whether to overwrite or not

    Definition Classes
    AbstractModule
  89. var scaleB: Double

    Attributes
    protected
    Definition Classes
    AbstractModule
  90. var scaleW: Double

    The scale of gradient weight and gradient bias before gradParameters being accumulated.

    The scale of gradient weight and gradient bias before gradParameters being accumulated.

    Attributes
    protected
    Definition Classes
    AbstractModule
  91. final def setExtraParameter(extraParam: Array[Tensor[T]]): TensorOp.this.type

    Set extra parameter to this module.

    Set extra parameter to this module. Extra parameter means the trainable parameters beside weight and bias. Such as runningMean and runningVar in BatchNormalization.

    returns

    this

    Definition Classes
    AbstractModule
  92. final def setLine(line: String): TensorOp.this.type

    Set the line separator when print the module

    Set the line separator when print the module

    line
    returns

    Definition Classes
    AbstractModule
  93. final def setName(name: String): TensorOp.this.type

    Set the module name

    Set the module name

    name
    returns

    Definition Classes
    AbstractModule
  94. def setScaleB(b: Double): TensorOp.this.type

    Set the scale of gradientBias

    Set the scale of gradientBias

    b

    the value of the scale of gradientBias

    returns

    this

    Definition Classes
    AbstractModule
  95. def setScaleW(w: Double): TensorOp.this.type

    Set the scale of gradientWeight

    Set the scale of gradientWeight

    w

    the value of the scale of gradientWeight

    returns

    this

    Definition Classes
    AbstractModule
  96. final def setWeightsBias(newWeights: Array[Tensor[T]]): TensorOp.this.type

    Set weight and bias for the module

    Set weight and bias for the module

    newWeights

    array of weights and bias

    returns

    Definition Classes
    AbstractModule
  97. final def sigmoid: TensorOp[T]

    build a TensorOp to do element-wise f(x) = 1 / (1 + exp(-x))

    build a TensorOp to do element-wise f(x) = 1 / (1 + exp(-x))

    returns

    TensorOp[T]

  98. final def sign: TensorOp[T]

    build a TensorOp to do element-wise f(x) = if (x>0) 1; if (x=0) 0; else -1

    build a TensorOp to do element-wise f(x) = if (x>0) 1; if (x=0) 0; else -1

    returns

    TensorOp[T]

  99. final def sqrt: TensorOp[T]

    build a TensorOp to do element-wise f(x) = sqrt(x)

    build a TensorOp to do element-wise f(x) = sqrt(x)

    returns

    TensorOp[T]

  100. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  101. final def t: TensorOp[T]

    build a TensorOp to do matrix transposition for 2d Tensors

    build a TensorOp to do matrix transposition for 2d Tensors

    returns

    TensorOp[T]

  102. final def tanh: TensorOp[T]

    build a TensorOp to do element-wise f(x) = tanh(x)

    build a TensorOp to do element-wise f(x) = tanh(x)

    returns

    TensorOp[T]

  103. def toGraph(startNodes: ModuleNode[T]*): Graph[T]

    Generate graph module with start nodes

    Generate graph module with start nodes

    startNodes
    returns

    Definition Classes
    AbstractModule
  104. def toString(): String

    Definition Classes
    AbstractModule → AnyRef → Any
  105. var train: Boolean

    Module status.

    Module status. It is useful for modules like dropout/batch normalization

    Attributes
    protected
    Definition Classes
    AbstractModule
  106. def training(): TensorOp.this.type

    Set the module to training mode

    Set the module to training mode

    returns

    Definition Classes
    AbstractModule
  107. def unFreeze(names: String*): TensorOp.this.type

    "unfreeze" module, i.

    "unfreeze" module, i.e. make the module parameters(weight/bias, if exists) to be trained(updated) in training process if names is not empty, unfreeze layers that match given names

    names

    array of module names to unFreeze

    Definition Classes
    AbstractModule
  108. final def updateGradInput(input: Tensor[T], gradOutput: Tensor[T]): Tensor[T]

    Computing the gradient of the module with respect to its own input.

    Computing the gradient of the module with respect to its own input. This is returned in gradInput. Also, the gradInput state variable is updated accordingly.

    input
    gradOutput
    returns

    Definition Classes
    OperationAbstractModule
  109. final def updateOutput(input: Tensor[T]): Tensor[T]

    Computes the output using the current parameter set of the class and input.

    Computes the output using the current parameter set of the class and input. This function returns the result which is stored in the output field.

    input
    returns

    Definition Classes
    TensorOpAbstractModule
  110. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  111. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  112. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  113. def zeroGradParameters(): Unit

    If the module has parameters, this will zero the accumulation of the gradients with respect to these parameters.

    If the module has parameters, this will zero the accumulation of the gradients with respect to these parameters. Otherwise, it does nothing.

    Definition Classes
    AbstractModule

Deprecated Value Members

  1. final def save(path: String, overWrite: Boolean = false): TensorOp.this.type

    Save this module to path.

    Save this module to path.

    path

    path to save module, local file system, HDFS and Amazon S3 is supported. HDFS path should be like "hdfs://[host]:[port]/xxx" Amazon S3 path should be like "s3a://bucket/xxx"

    overWrite

    if overwrite

    returns

    self

    Definition Classes
    AbstractModule
    Annotations
    @deprecated
    Deprecated

    (Since version 0.3.0) please use recommended saveModule(path, overWrite)

Inherited from Operation[Tensor[T], Tensor[T], T]

Inherited from AbstractModule[Tensor[T], Tensor[T], T]

Inherited from InferShape

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from scala.Any

Ungrouped