com.intel.analytics.bigdl.optim

Optimizer

object Optimizer

Linear Supertypes
AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. Optimizer
  2. AnyRef
  3. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. def apply[T, D](model: Module[T], dataset: DataSet[D], criterion: Criterion[T])(implicit arg0: ClassTag[T], ev: TensorNumeric[T]): Optimizer[T, D]

    Apply an optimizer.

    Apply an optimizer.

    model

    model will be optimizied

    dataset

    the input dataset - determines the type of optimizer

    criterion

    loss function

    returns

    an new Optimizer

  7. def apply[T](model: Module[T], sampleRDD: RDD[Sample[T]], criterion: Criterion[T], batchSize: Int, miniBatchImpl: MiniBatch[T])(implicit arg0: ClassTag[T], ev: TensorNumeric[T]): Optimizer[T, MiniBatch[T]]

    Apply an optimizer.

    Apply an optimizer. User can supply a customized implementation of trait MiniBatch to define how data is organize and retrieved in a mini batch.

    model

    model will be optimized

    sampleRDD

    training Samples

    criterion

    loss function

    batchSize

    mini batch size

    miniBatchImpl

    An User-Defined MiniBatch implementation

    returns

    an new Optimizer

  8. def apply[T](model: Module[T], sampleRDD: RDD[Sample[T]], criterion: Criterion[T], batchSize: Int, featurePaddingParam: PaddingParam[T] = null, labelPaddingParam: PaddingParam[T] = null)(implicit arg0: ClassTag[T], ev: TensorNumeric[T]): Optimizer[T, MiniBatch[T]]

    Apply an Optimizer.

    Apply an Optimizer.

    model

    model will be optimized

    sampleRDD

    training Samples

    criterion

    loss function

    batchSize

    mini batch size

    featurePaddingParam

    feature padding strategy, see com.intel.analytics.bigdl.dataset.PaddingParam for details.

    labelPaddingParam

    label padding strategy, see com.intel.analytics.bigdl.dataset.PaddingParam for details.

    returns

    An optimizer

  9. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  10. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  11. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  12. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  13. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  14. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  15. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  16. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  17. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  18. final def notify(): Unit

    Definition Classes
    AnyRef
  19. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  20. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  21. def toString(): String

    Definition Classes
    AnyRef → Any
  22. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  23. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  24. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from AnyRef

Inherited from Any

Ungrouped