com.intel.analytics.bigdl.utils.caffe

CaffeLoader

object CaffeLoader

Linear Supertypes
AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. CaffeLoader
  2. AnyRef
  3. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  7. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  8. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  9. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  10. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  11. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  12. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  13. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  14. def load[T](model: Module[T], defPath: String, modelPath: String, matchAll: Boolean = true, customizedConverters: HashMap[String, Customizable[T]] = null)(implicit arg0: ClassTag[T], ev: TensorNumeric[T]): Module[T]

    Load weight for pre-defined model

    Load weight for pre-defined model

    T

    data type

    model

    pre-defined model

    defPath

    prototxt file which defines the network

    modelPath

    weight file which contains the parameters

    matchAll

    if we need to match all layers from prototxt in weight file

    customizedConverters

    customized converters

    ev

    tensor numeric

    returns

    pre-defined model populated with weights

  15. def loadCaffe[T](defPath: String, modelPath: String, customizedConverters: HashMap[String, Customizable[T]] = null, outputNames: Array[String] = Array[String]())(implicit arg0: ClassTag[T], ev: TensorNumeric[T]): (Module[T], ParallelCriterion[T])

    load caffe model dynamically from prototxt and binary files

    load caffe model dynamically from prototxt and binary files

    T

    data type

    defPath

    prototxt file which illustrates the caffe model structure

    modelPath

    binary file containing the weight and bias

    customizedConverters

    customized layer converter

    outputNames

    additional output layer names besides the default(layers without next nodes)

    returns

    created module (graph) and criterion

  16. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  17. final def notify(): Unit

    Definition Classes
    AnyRef
  18. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  19. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  20. def toString(): String

    Definition Classes
    AnyRef → Any
  21. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  22. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  23. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from AnyRef

Inherited from Any

Ungrouped