com.intel.analytics.bigdl.python.api

PythonBigDL

class PythonBigDL[T] extends Serializable

Implementation of Python API for BigDL

Linear Supertypes
Serializable, Serializable, AnyRef, Any
Known Subclasses
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. PythonBigDL
  2. Serializable
  3. Serializable
  4. AnyRef
  5. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Instance Constructors

  1. new PythonBigDL()(implicit arg0: ClassTag[T], ev: TensorNumeric[T])

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. def activityToJTensors(outputActivity: Activity): List[JTensor]

  7. def addScheduler(seq: SequentialSchedule, scheduler: LearningRateSchedule, maxIteration: Int): SequentialSchedule

  8. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  9. def batching(dataset: DataSet[dataset.Sample[T]], batchSize: Int): DataSet[MiniBatch[T]]

  10. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  11. def createAbs(): Abs[T]

  12. def createAbsCriterion(sizeAverage: Boolean = true): AbsCriterion[T]

  13. def createActivityRegularization(l1: Double, l2: Double): ActivityRegularization[T]

  14. def createAdadelta(decayRate: Double = 0.9, Epsilon: Double = 1e-10): Adadelta[T]

  15. def createAdagrad(learningRate: Double = 1e-3, learningRateDecay: Double = 0.0, weightDecay: Double = 0.0): Adagrad[T]

  16. def createAdam(learningRate: Double = 1e-3, learningRateDecay: Double = 0.0, beta1: Double = 0.9, beta2: Double = 0.999, Epsilon: Double = 1e-8): Adam[T]

  17. def createAdamax(learningRate: Double = 0.002, beta1: Double = 0.9, beta2: Double = 0.999, Epsilon: Double = 1e-38): Adamax[T]

  18. def createAdd(inputSize: Int): Add[T]

  19. def createAddConstant(constant_scalar: Double, inplace: Boolean = false): AddConstant[T]

  20. def createAspectScale(scale: Int, scaleMultipleOf: Int, maxSize: Int, resizeMode: Int = 1, useScaleFactor: Boolean = true, minScale: Double = 1): FeatureTransformer

  21. def createBCECriterion(weights: JTensor = null, sizeAverage: Boolean = true): BCECriterion[T]

  22. def createBatchNormalization(nOutput: Int, eps: Double = 1e-5, momentum: Double = 0.1, affine: Boolean = true, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null): BatchNormalization[T]

  23. def createBiRecurrent(merge: AbstractModule[Table, Tensor[T], T] = null): BiRecurrent[T]

  24. def createBifurcateSplitTable(dimension: Int): BifurcateSplitTable[T]

  25. def createBilinear(inputSize1: Int, inputSize2: Int, outputSize: Int, biasRes: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): Bilinear[T]

  26. def createBilinearFiller(): BilinearFiller.type

  27. def createBinaryThreshold(th: Double, ip: Boolean): BinaryThreshold[T]

  28. def createBinaryTreeLSTM(inputSize: Int, hiddenSize: Int, gateOutput: Boolean = true, withGraph: Boolean = true): BinaryTreeLSTM[T]

  29. def createBottle(module: AbstractModule[Activity, Activity, T], nInputDim: Int = 2, nOutputDim1: Int = Int.MaxValue): Bottle[T]

  30. def createBrightness(deltaLow: Double, deltaHigh: Double): Brightness

  31. def createBytesToMat(byteKey: String): BytesToMat

  32. def createCAdd(size: List[Int], bRegularizer: Regularizer[T] = null): CAdd[T]

  33. def createCAddTable(inplace: Boolean = false): CAddTable[T, T]

  34. def createCAveTable(inplace: Boolean = false): CAveTable[T]

  35. def createCDivTable(): CDivTable[T]

  36. def createCMaxTable(): CMaxTable[T]

  37. def createCMinTable(): CMinTable[T]

  38. def createCMul(size: List[Int], wRegularizer: Regularizer[T] = null): CMul[T]

  39. def createCMulTable(): CMulTable[T]

  40. def createCSubTable(): CSubTable[T]

  41. def createCategoricalCrossEntropy(): CategoricalCrossEntropy[T]

  42. def createCenterCrop(cropWidth: Int, cropHeight: Int, isClip: Boolean): CenterCrop

  43. def createChannelNormalize(meanR: Double, meanG: Double, meanB: Double, stdR: Double = 1, stdG: Double = 1, stdB: Double = 1): FeatureTransformer

  44. def createChannelOrder(): ChannelOrder

  45. def createChannelScaledNormalizer(meanR: Int, meanG: Int, meanB: Int, scale: Double): ChannelScaledNormalizer

  46. def createClamp(min: Int, max: Int): Clamp[T]

  47. def createClassNLLCriterion(weights: JTensor = null, sizeAverage: Boolean = true, logProbAsInput: Boolean = true): ClassNLLCriterion[T]

  48. def createClassSimplexCriterion(nClasses: Int): ClassSimplexCriterion[T]

  49. def createColorJitter(brightnessProb: Double = 0.5, brightnessDelta: Double = 32, contrastProb: Double = 0.5, contrastLower: Double = 0.5, contrastUpper: Double = 1.5, hueProb: Double = 0.5, hueDelta: Double = 18, saturationProb: Double = 0.5, saturationLower: Double = 0.5, saturationUpper: Double = 1.5, randomOrderProb: Double = 0, shuffle: Boolean = false): ColorJitter

  50. def createConcat(dimension: Int): Concat[T]

  51. def createConcatTable(): ConcatTable[T]

  52. def createConstInitMethod(value: Double): ConstInitMethod

  53. def createContiguous(): Contiguous[T]

  54. def createContrast(deltaLow: Double, deltaHigh: Double): Contrast

  55. def createConvLSTMPeephole(inputSize: Int, outputSize: Int, kernelI: Int, kernelC: Int, stride: Int = 1, padding: Int = 1, activation: TensorModule[T] = null, innerActivation: TensorModule[T] = null, wRegularizer: Regularizer[T] = null, uRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, cRegularizer: Regularizer[T] = null, withPeephole: Boolean = true): ConvLSTMPeephole[T]

  56. def createConvLSTMPeephole3D(inputSize: Int, outputSize: Int, kernelI: Int, kernelC: Int, stride: Int = 1, padding: Int = 1, wRegularizer: Regularizer[T] = null, uRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, cRegularizer: Regularizer[T] = null, withPeephole: Boolean = true): ConvLSTMPeephole3D[T]

  57. def createCosine(inputSize: Int, outputSize: Int): Cosine[T]

  58. def createCosineDistance(): CosineDistance[T]

  59. def createCosineDistanceCriterion(sizeAverage: Boolean = true): CosineDistanceCriterion[T]

  60. def createCosineEmbeddingCriterion(margin: Double = 0.0, sizeAverage: Boolean = true): CosineEmbeddingCriterion[T]

  61. def createCosineProximityCriterion(): CosineProximityCriterion[T]

  62. def createCropping2D(heightCrop: List[Int], widthCrop: List[Int], dataFormat: String = "NCHW"): Cropping2D[T]

  63. def createCropping3D(dim1Crop: List[Int], dim2Crop: List[Int], dim3Crop: List[Int], dataFormat: String = Cropping3D.CHANNEL_FIRST): Cropping3D[T]

  64. def createCrossEntropyCriterion(weights: JTensor = null, sizeAverage: Boolean = true): CrossEntropyCriterion[T]

  65. def createCrossProduct(numTensor: Int = 0, embeddingSize: Int = 0): CrossProduct[T]

  66. def createDLClassifier(model: Module[T], criterion: Criterion[T], featureSize: ArrayList[Int], labelSize: ArrayList[Int]): DLClassifier[T]

  67. def createDLClassifierModel(model: Module[T], featureSize: ArrayList[Int]): DLClassifierModel[T]

  68. def createDLEstimator(model: Module[T], criterion: Criterion[T], featureSize: ArrayList[Int], labelSize: ArrayList[Int]): DLEstimator[T]

  69. def createDLImageTransformer(transformer: FeatureTransformer): DLImageTransformer

  70. def createDLModel(model: Module[T], featureSize: ArrayList[Int]): DLModel[T]

  71. def createDatasetFromImageFrame(imageFrame: ImageFrame): DataSet[ImageFeature]

  72. def createDefault(): Default

  73. def createDenseToSparse(): DenseToSparse[T]

  74. def createDetectionCrop(roiKey: String, normalized: Boolean): DetectionCrop

  75. def createDetectionOutputFrcnn(nmsThresh: Float = 0.3f, nClasses: Int, bboxVote: Boolean, maxPerImage: Int = 100, thresh: Double = 0.05): DetectionOutputFrcnn

  76. def createDetectionOutputSSD(nClasses: Int, shareLocation: Boolean, bgLabel: Int, nmsThresh: Double, nmsTopk: Int, keepTopK: Int, confThresh: Double, varianceEncodedInTarget: Boolean, confPostProcess: Boolean): DetectionOutputSSD[T]

  77. def createDiceCoefficientCriterion(sizeAverage: Boolean = true, epsilon: Float = 1.0f): DiceCoefficientCriterion[T]

  78. def createDistKLDivCriterion(sizeAverage: Boolean = true): DistKLDivCriterion[T]

  79. def createDistriOptimizer(model: AbstractModule[Activity, Activity, T], trainingRdd: JavaRDD[Sample], criterion: Criterion[T], optimMethod: Map[String, OptimMethod[T]], endTrigger: Trigger, batchSize: Int): Optimizer[T, MiniBatch[T]]

  80. def createDistriOptimizerFromDataSet(model: AbstractModule[Activity, Activity, T], trainDataSet: DataSet[ImageFeature], criterion: Criterion[T], optimMethod: Map[String, OptimMethod[T]], endTrigger: Trigger, batchSize: Int): Optimizer[T, MiniBatch[T]]

  81. def createDistributedImageFrame(imageRdd: JavaRDD[JTensor], labelRdd: JavaRDD[JTensor]): DistributedImageFrame

  82. def createDotProduct(): DotProduct[T]

  83. def createDotProductCriterion(sizeAverage: Boolean = false): DotProductCriterion[T]

  84. def createDropout(initP: Double = 0.5, inplace: Boolean = false, scale: Boolean = true): Dropout[T]

  85. def createELU(alpha: Double = 1.0, inplace: Boolean = false): ELU[T]

  86. def createEcho(): Echo[T]

  87. def createEuclidean(inputSize: Int, outputSize: Int, fastBackward: Boolean = true): Euclidean[T]

  88. def createEveryEpoch(): Trigger

  89. def createExp(): Exp[T]

  90. def createExpand(meansR: Int = 123, meansG: Int = 117, meansB: Int = 104, minExpandRatio: Double = 1.0, maxExpandRatio: Double = 4.0): Expand

  91. def createExponential(decayStep: Int, decayRate: Double, stairCase: Boolean = false): Exponential

  92. def createFiller(startX: Double, startY: Double, endX: Double, endY: Double, value: Int = 255): Filler

  93. def createFixExpand(eh: Int, ew: Int): FixExpand

  94. def createFixedCrop(wStart: Double, hStart: Double, wEnd: Double, hEnd: Double, normalized: Boolean, isClip: Boolean): FixedCrop

  95. def createFlattenTable(): FlattenTable[T]

  96. def createFtrl(learningRate: Double = 1e-3, learningRatePower: Double = 0.5, initialAccumulatorValue: Double = 0.1, l1RegularizationStrength: Double = 0.0, l2RegularizationStrength: Double = 0.0, l2ShrinkageRegularizationStrength: Double = 0.0): Ftrl[T]

  97. def createGRU(inputSize: Int, outputSize: Int, p: Double = 0, activation: TensorModule[T] = null, innerActivation: TensorModule[T] = null, wRegularizer: Regularizer[T] = null, uRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): GRU[T]

  98. def createGaussianCriterion(): GaussianCriterion[T]

  99. def createGaussianDropout(rate: Double): GaussianDropout[T]

  100. def createGaussianNoise(stddev: Double): GaussianNoise[T]

  101. def createGaussianSampler(): GaussianSampler[T]

  102. def createGradientReversal(lambda: Double = 1): GradientReversal[T]

  103. def createHFlip(): HFlip

  104. def createHardShrink(lambda: Double = 0.5): HardShrink[T]

  105. def createHardSigmoid: HardSigmoid[T]

  106. def createHardTanh(minValue: Double = 1, maxValue: Double = 1, inplace: Boolean = false): HardTanh[T]

  107. def createHighway(size: Int, withBias: Boolean, activation: TensorModule[T] = null, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): Graph[T]

  108. def createHingeEmbeddingCriterion(margin: Double = 1, sizeAverage: Boolean = true): HingeEmbeddingCriterion[T]

  109. def createHitRatio(k: Int = 10, negNum: Int = 100): ValidationMethod[T]

  110. def createHue(deltaLow: Double, deltaHigh: Double): Hue

  111. def createIdentity(): Identity[T]

  112. def createImageFeature(data: JTensor = null, label: JTensor = null, uri: String = null): ImageFeature

  113. def createImageFrameToSample(inputKeys: List[String], targetKeys: List[String], sampleKey: String): ImageFrameToSample[T]

  114. def createIndex(dimension: Int): Index[T]

  115. def createInferReshape(size: List[Int], batchMode: Boolean = false): InferReshape[T]

  116. def createInput(): ModuleNode[T]

  117. def createJoinTable(dimension: Int, nInputDims: Int): JoinTable[T]

  118. def createKLDCriterion(sizeAverage: Boolean): KLDCriterion[T]

  119. def createKullbackLeiblerDivergenceCriterion: KullbackLeiblerDivergenceCriterion[T]

  120. def createL1Cost(): L1Cost[T]

  121. def createL1HingeEmbeddingCriterion(margin: Double = 1): L1HingeEmbeddingCriterion[T]

  122. def createL1L2Regularizer(l1: Double, l2: Double): L1L2Regularizer[T]

  123. def createL1Penalty(l1weight: Int, sizeAverage: Boolean = false, provideOutput: Boolean = true): L1Penalty[T]

  124. def createL1Regularizer(l1: Double): L1Regularizer[T]

  125. def createL2Regularizer(l2: Double): L2Regularizer[T]

  126. def createLBFGS(maxIter: Int = 20, maxEval: Double = Double.MaxValue, tolFun: Double = 1e-5, tolX: Double = 1e-9, nCorrection: Int = 100, learningRate: Double = 1.0, verbose: Boolean = false, lineSearch: LineSearch[T] = null, lineSearchOptions: Map[Any, Any] = null): LBFGS[T]

  127. def createLSTM(inputSize: Int, hiddenSize: Int, p: Double = 0, activation: TensorModule[T] = null, innerActivation: TensorModule[T] = null, wRegularizer: Regularizer[T] = null, uRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): LSTM[T]

  128. def createLSTMPeephole(inputSize: Int, hiddenSize: Int, p: Double = 0, wRegularizer: Regularizer[T] = null, uRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): LSTMPeephole[T]

  129. def createLeakyReLU(negval: Double = 0.01, inplace: Boolean = false): LeakyReLU[T]

  130. def createLinear(inputSize: Int, outputSize: Int, withBias: Boolean, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null): Linear[T]

  131. def createLocalImageFrame(images: List[JTensor], labels: List[JTensor]): LocalImageFrame

  132. def createLocalOptimizer(features: List[JTensor], y: JTensor, model: AbstractModule[Activity, Activity, T], criterion: Criterion[T], optimMethod: Map[String, OptimMethod[T]], endTrigger: Trigger, batchSize: Int, localCores: Int): Optimizer[T, MiniBatch[T]]

  133. def createLocallyConnected1D(nInputFrame: Int, inputFrameSize: Int, outputFrameSize: Int, kernelW: Int, strideW: Int = 1, propagateBack: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null): LocallyConnected1D[T]

  134. def createLocallyConnected2D(nInputPlane: Int, inputWidth: Int, inputHeight: Int, nOutputPlane: Int, kernelW: Int, kernelH: Int, strideW: Int = 1, strideH: Int = 1, padW: Int = 0, padH: Int = 0, propagateBack: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null, withBias: Boolean = true, dataFormat: String = "NCHW"): LocallyConnected2D[T]

  135. def createLog(): Log[T]

  136. def createLogSigmoid(): LogSigmoid[T]

  137. def createLogSoftMax(): LogSoftMax[T]

  138. def createLookupTable(nIndex: Int, nOutput: Int, paddingValue: Double = 0, maxNorm: Double = Double.MaxValue, normType: Double = 2.0, shouldScaleGradByFreq: Boolean = false, wRegularizer: Regularizer[T] = null): LookupTable[T]

  139. def createLookupTableSparse(nIndex: Int, nOutput: Int, combiner: String = "sum", maxNorm: Double = 1, wRegularizer: Regularizer[T] = null): LookupTableSparse[T]

  140. def createLoss(criterion: Criterion[T]): ValidationMethod[T]

  141. def createMAE(): ValidationMethod[T]

  142. def createMM(transA: Boolean = false, transB: Boolean = false): MM[T]

  143. def createMSECriterion: MSECriterion[T]

  144. def createMV(trans: Boolean = false): MV[T]

  145. def createMapTable(module: AbstractModule[Activity, Activity, T] = null): MapTable[T]

  146. def createMarginCriterion(margin: Double = 1.0, sizeAverage: Boolean = true, squared: Boolean = false): MarginCriterion[T]

  147. def createMarginRankingCriterion(margin: Double = 1.0, sizeAverage: Boolean = true): MarginRankingCriterion[T]

  148. def createMaskedSelect(): MaskedSelect[T]

  149. def createMasking(maskValue: Double): Masking[T]

  150. def createMatToFloats(validHeight: Int = 300, validWidth: Int = 300, validChannels: Int = 3, outKey: String = ImageFeature.floats, shareBuffer: Boolean = true): MatToFloats

  151. def createMatToTensor(toRGB: Boolean = false, tensorKey: String = ImageFeature.imageTensor): MatToTensor[T]

  152. def createMax(dim: Int = 1, numInputDims: Int = Int.MinValue): Max[T]

  153. def createMaxEpoch(max: Int): Trigger

  154. def createMaxIteration(max: Int): Trigger

  155. def createMaxScore(max: Float): Trigger

  156. def createMaxout(inputSize: Int, outputSize: Int, maxoutNumber: Int, withBias: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: Tensor[T] = null, initBias: Tensor[T] = null): Maxout[T]

  157. def createMean(dimension: Int = 1, nInputDims: Int = 1, squeeze: Boolean = true): Mean[T]

  158. def createMeanAbsolutePercentageCriterion: MeanAbsolutePercentageCriterion[T]

  159. def createMeanSquaredLogarithmicCriterion: MeanSquaredLogarithmicCriterion[T]

  160. def createMin(dim: Int = 1, numInputDims: Int = Int.MinValue): Min[T]

  161. def createMinLoss(min: Float): Trigger

  162. def createMixtureTable(dim: Int = Int.MaxValue): MixtureTable[T]

  163. def createModel(input: List[ModuleNode[T]], output: List[ModuleNode[T]]): Graph[T]

  164. def createModelPreprocessor(preprocessor: AbstractModule[Activity, Activity, T], trainable: AbstractModule[Activity, Activity, T]): Graph[T]

  165. def createMsraFiller(varianceNormAverage: Boolean = true): MsraFiller

  166. def createMul(): Mul[T]

  167. def createMulConstant(scalar: Double, inplace: Boolean = false): MulConstant[T]

  168. def createMultiCriterion(): MultiCriterion[T]

  169. def createMultiLabelMarginCriterion(sizeAverage: Boolean = true): MultiLabelMarginCriterion[T]

  170. def createMultiLabelSoftMarginCriterion(weights: JTensor = null, sizeAverage: Boolean = true): MultiLabelSoftMarginCriterion[T]

  171. def createMultiMarginCriterion(p: Int = 1, weights: JTensor = null, margin: Double = 1.0, sizeAverage: Boolean = true): MultiMarginCriterion[T]

  172. def createMultiRNNCell(cells: List[Cell[T]]): MultiRNNCell[T]

  173. def createMultiStep(stepSizes: List[Int], gamma: Double): MultiStep

  174. def createNDCG(k: Int = 10, negNum: Int = 100): ValidationMethod[T]

  175. def createNarrow(dimension: Int, offset: Int, length: Int = 1): Narrow[T]

  176. def createNarrowTable(offset: Int, length: Int = 1): NarrowTable[T]

  177. def createNegative(inplace: Boolean): Negative[T]

  178. def createNegativeEntropyPenalty(beta: Double): NegativeEntropyPenalty[T]

  179. def createNode(module: AbstractModule[Activity, Activity, T], x: List[ModuleNode[T]]): ModuleNode[T]

  180. def createNormalize(p: Double, eps: Double = 1e-10): Normalize[T]

  181. def createNormalizeScale(p: Double, eps: Double = 1e-10, scale: Double, size: List[Int], wRegularizer: Regularizer[T] = null): NormalizeScale[T]

  182. def createOnes(): Ones.type

  183. def createPGCriterion(sizeAverage: Boolean = false): PGCriterion[T]

  184. def createPReLU(nOutputPlane: Int = 0): PReLU[T]

  185. def createPack(dimension: Int): Pack[T]

  186. def createPadding(dim: Int, pad: Int, nInputDim: Int, value: Double = 0.0, nIndex: Int = 1): Padding[T]

  187. def createPairwiseDistance(norm: Int = 2): PairwiseDistance[T]

  188. def createParallelAdam(learningRate: Double = 1e-3, learningRateDecay: Double = 0.0, beta1: Double = 0.9, beta2: Double = 0.999, Epsilon: Double = 1e-8, parallelNum: Int = Engine.coreNumber()): ParallelAdam[T]

  189. def createParallelCriterion(repeatTarget: Boolean = false): ParallelCriterion[T]

  190. def createParallelTable(): ParallelTable[T]

  191. def createPipeline(list: List[FeatureTransformer]): FeatureTransformer

  192. def createPixelBytesToMat(byteKey: String): PixelBytesToMat

  193. def createPixelNormalize(means: List[Double]): PixelNormalizer

  194. def createPlateau(monitor: String, factor: Float = 0.1f, patience: Int = 10, mode: String = "min", epsilon: Float = 1e-4f, cooldown: Int = 0, minLr: Float = 0): Plateau

  195. def createPoissonCriterion: PoissonCriterion[T]

  196. def createPoly(power: Double, maxIteration: Int): Poly

  197. def createPower(power: Double, scale: Double = 1, shift: Double = 0): Power[T]

  198. def createPriorBox(minSizes: List[Double], maxSizes: List[Double] = null, aspectRatios: List[Double] = null, isFlip: Boolean = true, isClip: Boolean = false, variances: List[Double] = null, offset: Float = 0.5f, imgH: Int = 0, imgW: Int = 0, imgSize: Int = 0, stepH: Float = 0, stepW: Float = 0, step: Float = 0): PriorBox[T]

  199. def createProposal(preNmsTopN: Int, postNmsTopN: Int, ratios: List[Double], scales: List[Double], rpnPreNmsTopNTrain: Int = 12000, rpnPostNmsTopNTrain: Int = 2000): Proposal

  200. def createRMSprop(learningRate: Double = 1e-2, learningRateDecay: Double = 0.0, decayRate: Double = 0.99, Epsilon: Double = 1e-8): RMSprop[T]

  201. def createRReLU(lower: Double = 1.0 / 8, upper: Double = 1.0 / 3, inplace: Boolean = false): RReLU[T]

  202. def createRandomAlterAspect(min_area_ratio: Float, max_area_ratio: Int, min_aspect_ratio_change: Float, interp_mode: String, cropLength: Int): RandomAlterAspect

  203. def createRandomAspectScale(scales: List[Int], scaleMultipleOf: Int = 1, maxSize: Int = 1000): RandomAspectScale

  204. def createRandomCrop(cropWidth: Int, cropHeight: Int, isClip: Boolean): RandomCrop

  205. def createRandomCropper(cropWidth: Int, cropHeight: Int, mirror: Boolean, cropperMethod: String, channels: Int): RandomCropper

  206. def createRandomNormal(mean: Double, stdv: Double): RandomNormal

  207. def createRandomResize(minSize: Int, maxSize: Int): RandomResize

  208. def createRandomSampler(): FeatureTransformer

  209. def createRandomTransformer(transformer: FeatureTransformer, prob: Double): RandomTransformer

  210. def createRandomUniform(): InitializationMethod

  211. def createRandomUniform(lower: Double, upper: Double): InitializationMethod

  212. def createReLU(ip: Boolean = false): ReLU[T]

  213. def createReLU6(inplace: Boolean = false): ReLU6[T]

  214. def createRecurrent(): Recurrent[T]

  215. def createRecurrentDecoder(outputLength: Int): RecurrentDecoder[T]

  216. def createReplicate(nFeatures: Int, dim: Int = 1, nDim: Int = Int.MaxValue): Replicate[T]

  217. def createReshape(size: List[Int], batchMode: Boolean = null): Reshape[T]

  218. def createResize(resizeH: Int, resizeW: Int, resizeMode: Int = Imgproc.INTER_LINEAR, useScaleFactor: Boolean): Resize

  219. def createResizeBilinear(outputHeight: Int, outputWidth: Int, alignCorner: Boolean, dataFormat: String): ResizeBilinear[T]

  220. def createReverse(dimension: Int = 1, isInplace: Boolean = false): Reverse[T]

  221. def createRnnCell(inputSize: Int, hiddenSize: Int, activation: TensorModule[T], isInputWithBias: Boolean = true, isHiddenWithBias: Boolean = true, wRegularizer: Regularizer[T] = null, uRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): RnnCell[T]

  222. def createRoiHFlip(normalized: Boolean = true): RoiHFlip

  223. def createRoiNormalize(): RoiNormalize

  224. def createRoiPooling(pooled_w: Int, pooled_h: Int, spatial_scale: Double): RoiPooling[T]

  225. def createRoiProject(needMeetCenterConstraint: Boolean): RoiProject

  226. def createRoiResize(normalized: Boolean): RoiResize

  227. def createSGD(learningRate: Double = 1e-3, learningRateDecay: Double = 0.0, weightDecay: Double = 0.0, momentum: Double = 0.0, dampening: Double = Double.MaxValue, nesterov: Boolean = false, leaningRateSchedule: LearningRateSchedule = SGD.Default(), learningRates: JTensor = null, weightDecays: JTensor = null): SGD[T]

  228. def createSReLU(shape: ArrayList[Int], shareAxes: ArrayList[Int] = null): SReLU[T]

  229. def createSaturation(deltaLow: Double, deltaHigh: Double): Saturation

  230. def createScale(size: List[Int]): Scale[T]

  231. def createSelect(dimension: Int, index: Int): Select[T]

  232. def createSelectTable(dimension: Int): SelectTable[T]

  233. def createSequential(): Container[Activity, Activity, T]

  234. def createSequentialSchedule(iterationPerEpoch: Int): SequentialSchedule

  235. def createSeveralIteration(interval: Int): Trigger

  236. def createSigmoid(): Sigmoid[T]

  237. def createSmoothL1Criterion(sizeAverage: Boolean = true): SmoothL1Criterion[T]

  238. def createSmoothL1CriterionWithWeights(sigma: Double, num: Int = 0): SmoothL1CriterionWithWeights[T]

  239. def createSoftMarginCriterion(sizeAverage: Boolean = true): SoftMarginCriterion[T]

  240. def createSoftMax(): SoftMax[T]

  241. def createSoftMin(): SoftMin[T]

  242. def createSoftPlus(beta: Double = 1.0): SoftPlus[T]

  243. def createSoftShrink(lambda: Double = 0.5): SoftShrink[T]

  244. def createSoftSign(): SoftSign[T]

  245. def createSoftmaxWithCriterion(ignoreLabel: Integer = null, normalizeMode: String = "VALID"): SoftmaxWithCriterion[T]

  246. def createSparseJoinTable(dimension: Int): SparseJoinTable[T]

  247. def createSparseLinear(inputSize: Int, outputSize: Int, withBias: Boolean, backwardStart: Int = 1, backwardLength: Int = 1, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null): SparseLinear[T]

  248. def createSpatialAveragePooling(kW: Int, kH: Int, dW: Int = 1, dH: Int = 1, padW: Int = 0, padH: Int = 0, globalPooling: Boolean = false, ceilMode: Boolean = false, countIncludePad: Boolean = true, divide: Boolean = true, format: String = "NCHW"): SpatialAveragePooling[T]

  249. def createSpatialBatchNormalization(nOutput: Int, eps: Double = 1e-5, momentum: Double = 0.1, affine: Boolean = true, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null, dataFormat: String = "NCHW"): SpatialBatchNormalization[T]

  250. def createSpatialContrastiveNormalization(nInputPlane: Int = 1, kernel: JTensor = null, threshold: Double = 1e-4, thresval: Double = 1e-4): SpatialContrastiveNormalization[T]

  251. def createSpatialConvolution(nInputPlane: Int, nOutputPlane: Int, kernelW: Int, kernelH: Int, strideW: Int = 1, strideH: Int = 1, padW: Int = 0, padH: Int = 0, nGroup: Int = 1, propagateBack: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null, withBias: Boolean = true, dataFormat: String = "NCHW"): SpatialConvolution[T]

  252. def createSpatialConvolutionMap(connTable: JTensor, kW: Int, kH: Int, dW: Int = 1, dH: Int = 1, padW: Int = 0, padH: Int = 0, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): SpatialConvolutionMap[T]

  253. def createSpatialCrossMapLRN(size: Int = 5, alpha: Double = 1.0, beta: Double = 0.75, k: Double = 1.0, dataFormat: String = "NCHW"): SpatialCrossMapLRN[T]

  254. def createSpatialDilatedConvolution(nInputPlane: Int, nOutputPlane: Int, kW: Int, kH: Int, dW: Int = 1, dH: Int = 1, padW: Int = 0, padH: Int = 0, dilationW: Int = 1, dilationH: Int = 1, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): SpatialDilatedConvolution[T]

  255. def createSpatialDivisiveNormalization(nInputPlane: Int = 1, kernel: JTensor = null, threshold: Double = 1e-4, thresval: Double = 1e-4): SpatialDivisiveNormalization[T]

  256. def createSpatialDropout1D(initP: Double = 0.5): SpatialDropout1D[T]

  257. def createSpatialDropout2D(initP: Double = 0.5, dataFormat: String = "NCHW"): SpatialDropout2D[T]

  258. def createSpatialDropout3D(initP: Double = 0.5, dataFormat: String = "NCHW"): SpatialDropout3D[T]

  259. def createSpatialFullConvolution(nInputPlane: Int, nOutputPlane: Int, kW: Int, kH: Int, dW: Int = 1, dH: Int = 1, padW: Int = 0, padH: Int = 0, adjW: Int = 0, adjH: Int = 0, nGroup: Int = 1, noBias: Boolean = false, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): SpatialFullConvolution[T]

  260. def createSpatialMaxPooling(kW: Int, kH: Int, dW: Int, dH: Int, padW: Int = 0, padH: Int = 0, ceilMode: Boolean = false, format: String = "NCHW"): SpatialMaxPooling[T]

  261. def createSpatialSeparableConvolution(nInputChannel: Int, nOutputChannel: Int, depthMultiplier: Int, kW: Int, kH: Int, sW: Int = 1, sH: Int = 1, pW: Int = 0, pH: Int = 0, withBias: Boolean = true, dataFormat: String = "NCHW", wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, pRegularizer: Regularizer[T] = null): SpatialSeparableConvolution[T]

  262. def createSpatialShareConvolution(nInputPlane: Int, nOutputPlane: Int, kernelW: Int, kernelH: Int, strideW: Int = 1, strideH: Int = 1, padW: Int = 0, padH: Int = 0, nGroup: Int = 1, propagateBack: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null, withBias: Boolean = true): SpatialShareConvolution[T]

  263. def createSpatialSubtractiveNormalization(nInputPlane: Int = 1, kernel: JTensor = null): SpatialSubtractiveNormalization[T]

  264. def createSpatialWithinChannelLRN(size: Int = 5, alpha: Double = 1.0, beta: Double = 0.75): SpatialWithinChannelLRN[T]

  265. def createSpatialZeroPadding(padLeft: Int, padRight: Int, padTop: Int, padBottom: Int): SpatialZeroPadding[T]

  266. def createSplitTable(dimension: Int, nInputDims: Int = 1): SplitTable[T]

  267. def createSqrt(): Sqrt[T]

  268. def createSquare(): Square[T]

  269. def createSqueeze(dim: Int = Int.MinValue, numInputDims: Int = Int.MinValue): Squeeze[T]

  270. def createStep(stepSize: Int, gamma: Double): Step

  271. def createSum(dimension: Int = 1, nInputDims: Int = 1, sizeAverage: Boolean = false, squeeze: Boolean = true): Sum[T]

  272. def createTanh(): Tanh[T]

  273. def createTanhShrink(): TanhShrink[T]

  274. def createTemporalConvolution(inputFrameSize: Int, outputFrameSize: Int, kernelW: Int, strideW: Int = 1, propagateBack: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null): TemporalConvolution[T]

  275. def createTemporalMaxPooling(kW: Int, dW: Int): TemporalMaxPooling[T]

  276. def createThreshold(th: Double = 1e-6, v: Double = 0.0, ip: Boolean = false): Threshold[T]

  277. def createTile(dim: Int, copies: Int): Tile[T]

  278. def createTimeDistributed(layer: TensorModule[T]): TimeDistributed[T]

  279. def createTimeDistributedCriterion(critrn: TensorCriterion[T], sizeAverage: Boolean = false): TimeDistributedCriterion[T]

  280. def createTimeDistributedMaskCriterion(critrn: TensorCriterion[T], paddingValue: Int = 0): TimeDistributedMaskCriterion[T]

  281. def createTop1Accuracy(): ValidationMethod[T]

  282. def createTop5Accuracy(): ValidationMethod[T]

  283. def createTrainSummary(logDir: String, appName: String): TrainSummary

  284. def createTransformerCriterion(criterion: AbstractCriterion[Activity, Activity, T], inputTransformer: AbstractModule[Activity, Activity, T] = null, targetTransformer: AbstractModule[Activity, Activity, T] = null): TransformerCriterion[T]

  285. def createTranspose(permutations: List[List[Int]]): Transpose[T]

  286. def createTreeNNAccuracy(): ValidationMethod[T]

  287. def createTriggerAnd(first: Trigger, others: List[Trigger]): Trigger

  288. def createTriggerOr(first: Trigger, others: List[Trigger]): Trigger

  289. def createUnsqueeze(pos: Int, numInputDims: Int = Int.MinValue): Unsqueeze[T]

  290. def createUpSampling1D(length: Int): UpSampling1D[T]

  291. def createUpSampling2D(size: List[Int], dataFormat: String): UpSampling2D[T]

  292. def createUpSampling3D(size: List[Int]): UpSampling3D[T]

  293. def createValidationSummary(logDir: String, appName: String): ValidationSummary

  294. def createView(sizes: List[Int], num_input_dims: Int = 0): View[T]

  295. def createVolumetricAveragePooling(kT: Int, kW: Int, kH: Int, dT: Int, dW: Int, dH: Int, padT: Int = 0, padW: Int = 0, padH: Int = 0, countIncludePad: Boolean = true, ceilMode: Boolean = false): VolumetricAveragePooling[T]

  296. def createVolumetricConvolution(nInputPlane: Int, nOutputPlane: Int, kT: Int, kW: Int, kH: Int, dT: Int = 1, dW: Int = 1, dH: Int = 1, padT: Int = 0, padW: Int = 0, padH: Int = 0, withBias: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): VolumetricConvolution[T]

  297. def createVolumetricFullConvolution(nInputPlane: Int, nOutputPlane: Int, kT: Int, kW: Int, kH: Int, dT: Int = 1, dW: Int = 1, dH: Int = 1, padT: Int = 0, padW: Int = 0, padH: Int = 0, adjT: Int = 0, adjW: Int = 0, adjH: Int = 0, nGroup: Int = 1, noBias: Boolean = false, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): VolumetricFullConvolution[T]

  298. def createVolumetricMaxPooling(kT: Int, kW: Int, kH: Int, dT: Int, dW: Int, dH: Int, padT: Int = 0, padW: Int = 0, padH: Int = 0): VolumetricMaxPooling[T]

  299. def createWarmup(delta: Double): Warmup

  300. def createXavier(): Xavier.type

  301. def createZeros(): Zeros.type

  302. def criterionBackward(criterion: AbstractCriterion[Activity, Activity, T], input: List[JTensor], inputIsTable: Boolean, target: List[JTensor], targetIsTable: Boolean): List[JTensor]

  303. def criterionForward(criterion: AbstractCriterion[Activity, Activity, T], input: List[JTensor], inputIsTable: Boolean, target: List[JTensor], targetIsTable: Boolean): T

  304. def disableClip(optimizer: Optimizer[T, MiniBatch[T]]): Unit

  305. def distributedImageFrameRandomSplit(imageFrame: DistributedImageFrame, weights: List[Double]): Array[ImageFrame]

  306. def distributedImageFrameToImageTensorRdd(imageFrame: DistributedImageFrame, floatKey: String = ImageFeature.floats, toChw: Boolean = true): JavaRDD[JTensor]

  307. def distributedImageFrameToLabelTensorRdd(imageFrame: DistributedImageFrame): JavaRDD[JTensor]

  308. def distributedImageFrameToPredict(imageFrame: DistributedImageFrame, key: String): JavaRDD[List[Any]]

  309. def distributedImageFrameToSample(imageFrame: DistributedImageFrame, key: String): JavaRDD[Sample]

  310. def distributedImageFrameToUri(imageFrame: DistributedImageFrame, key: String): JavaRDD[String]

  311. def dlClassifierModelTransform(dlClassifierModel: DLClassifierModel[T], dataSet: DataFrame): DataFrame

  312. def dlImageTransform(dlImageTransformer: DLImageTransformer, dataSet: DataFrame): DataFrame

  313. def dlModelTransform(dlModel: DLModel[T], dataSet: DataFrame): DataFrame

  314. def dlReadImage(path: String, sc: JavaSparkContext, minParitions: Int): DataFrame

  315. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  316. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  317. def evaluate(module: AbstractModule[Activity, Activity, T]): AbstractModule[Activity, Activity, T]

  318. def featureTransformDataset(dataset: DataSet[ImageFeature], transformer: FeatureTransformer): DataSet[ImageFeature]

  319. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  320. def findGraphNode(model: Graph[T], name: String): ModuleNode[T]

  321. def fitClassifier(classifier: DLClassifier[T], dataSet: DataFrame): DLModel[T]

  322. def fitEstimator(estimator: DLEstimator[T], dataSet: DataFrame): DLModel[T]

  323. def freeze(model: AbstractModule[Activity, Activity, T], freezeLayers: List[String]): AbstractModule[Activity, Activity, T]

  324. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  325. def getContainerModules(module: Container[Activity, Activity, T]): List[AbstractModule[Activity, Activity, T]]

  326. def getFlattenModules(module: Container[Activity, Activity, T], includeContainer: Boolean): List[AbstractModule[Activity, Activity, T]]

  327. def getHiddenState(rec: Recurrent[T]): JActivity

  328. def getNodeAndCoreNumber(): Array[Int]

  329. def getRealClassNameOfJValue(module: AbstractModule[Activity, Activity, T]): String

  330. def getRunningMean(module: BatchNormalization[T]): JTensor

  331. def getRunningStd(module: BatchNormalization[T]): JTensor

  332. def getWeights(model: AbstractModule[Activity, Activity, T]): List[JTensor]

  333. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  334. def imageFeatureGetKeys(imageFeature: ImageFeature): List[String]

  335. def imageFeatureToImageTensor(imageFeature: ImageFeature, floatKey: String = ImageFeature.floats, toChw: Boolean = true): JTensor

  336. def imageFeatureToLabelTensor(imageFeature: ImageFeature): JTensor

  337. def initEngine(): Unit

  338. def isDistributed(imageFrame: ImageFrame): Boolean

  339. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  340. def isLocal(imageFrame: ImageFrame): Boolean

  341. def isWithWeights(module: Module[T]): Boolean

  342. def jTensorsToActivity(input: List[JTensor], isTable: Boolean): Activity

  343. def loadBigDL(path: String): AbstractModule[Activity, Activity, T]

  344. def loadBigDLModule(modulePath: String, weightPath: String): AbstractModule[Activity, Activity, T]

  345. def loadCaffe(model: AbstractModule[Activity, Activity, T], defPath: String, modelPath: String, matchAll: Boolean = true): AbstractModule[Activity, Activity, T]

  346. def loadCaffeModel(defPath: String, modelPath: String): AbstractModule[Activity, Activity, T]

  347. def loadOptimMethod(path: String): OptimMethod[T]

  348. def loadTF(path: String, inputs: List[String], outputs: List[String], byteOrder: String, binFile: String = null, generatedBackward: Boolean = true): AbstractModule[Activity, Activity, T]

  349. def loadTorch(path: String): AbstractModule[Activity, Activity, T]

  350. def localImageFrameToImageTensor(imageFrame: LocalImageFrame, floatKey: String = ImageFeature.floats, toChw: Boolean = true): List[JTensor]

  351. def localImageFrameToLabelTensor(imageFrame: LocalImageFrame): List[JTensor]

  352. def localImageFrameToPredict(imageFrame: LocalImageFrame, key: String): List[List[Any]]

  353. def localImageFrameToSample(imageFrame: LocalImageFrame, key: String): List[Sample]

  354. def localImageFrameToUri(imageFrame: LocalImageFrame, key: String): List[String]

  355. def modelBackward(model: AbstractModule[Activity, Activity, T], input: List[JTensor], inputIsTable: Boolean, gradOutput: List[JTensor], gradOutputIsTable: Boolean): List[JTensor]

  356. def modelEvaluate(model: AbstractModule[Activity, Activity, T], valRDD: JavaRDD[Sample], batchSize: Int, valMethods: List[ValidationMethod[T]]): List[EvaluatedResult]

  357. def modelEvaluateImageFrame(model: AbstractModule[Activity, Activity, T], imageFrame: ImageFrame, batchSize: Int, valMethods: List[ValidationMethod[T]]): List[EvaluatedResult]

  358. def modelForward(model: AbstractModule[Activity, Activity, T], input: List[JTensor], inputIsTable: Boolean): List[JTensor]

  359. def modelGetParameters(model: AbstractModule[Activity, Activity, T]): Map[Any, Map[Any, List[List[Any]]]]

  360. def modelPredictClass(model: AbstractModule[Activity, Activity, T], dataRdd: JavaRDD[Sample]): JavaRDD[Int]

  361. def modelPredictImage(model: AbstractModule[Activity, Activity, T], imageFrame: ImageFrame, featLayerName: String, shareBuffer: Boolean, batchPerPartition: Int, predictKey: String): ImageFrame

  362. def modelPredictRDD(model: AbstractModule[Activity, Activity, T], dataRdd: JavaRDD[Sample], batchSize: Int = 1): JavaRDD[JTensor]

  363. def modelSave(module: AbstractModule[Activity, Activity, T], path: String, overWrite: Boolean): Unit

  364. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  365. final def notify(): Unit

    Definition Classes
    AnyRef
  366. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  367. def predictLocal(model: AbstractModule[Activity, Activity, T], features: List[JTensor], batchSize: Int = 1): List[JTensor]

  368. def predictLocalClass(model: AbstractModule[Activity, Activity, T], features: List[JTensor]): List[Int]

  369. def quantize(module: AbstractModule[Activity, Activity, T]): Module[T]

  370. def read(path: String, sc: JavaSparkContext, minPartitions: Int): ImageFrame

  371. def readParquet(path: String, sc: JavaSparkContext): DistributedImageFrame

  372. def redirectSparkLogs(logPath: String): Unit

  373. def saveBigDLModule(module: AbstractModule[Activity, Activity, T], modulePath: String, weightPath: String, overWrite: Boolean): Unit

  374. def saveCaffe(module: AbstractModule[Activity, Activity, T], prototxtPath: String, modelPath: String, useV2: Boolean = true, overwrite: Boolean = false): Unit

  375. def saveGraphTopology(model: Graph[T], logPath: String): Graph[T]

  376. def saveOptimMethod(method: OptimMethod[T], path: String, overWrite: Boolean = false): Unit

  377. def saveTF(model: AbstractModule[Activity, Activity, T], inputs: List[Any], path: String, byteOrder: String, dataFormat: String): Unit

  378. def saveTensorDictionary(tensors: HashMap[String, JTensor], path: String): Unit

    Save tensor dictionary to a Java hashmap object file

  379. def seqFilesToImageFrame(url: String, sc: JavaSparkContext, classNum: Int, partitionNum: Int): ImageFrame

  380. def setBatchSizeDLClassifier(classifier: DLClassifier[T], batchSize: Int): DLClassifier[T]

  381. def setBatchSizeDLClassifierModel(dlClassifierModel: DLClassifierModel[T], batchSize: Int): DLClassifierModel[T]

  382. def setBatchSizeDLEstimator(estimator: DLEstimator[T], batchSize: Int): DLEstimator[T]

  383. def setBatchSizeDLModel(dlModel: DLModel[T], batchSize: Int): DLModel[T]

  384. def setCheckPoint(optimizer: Optimizer[T, MiniBatch[T]], trigger: Trigger, checkPointPath: String, isOverwrite: Boolean): Unit

  385. def setConstantClip(optimizer: Optimizer[T, MiniBatch[T]], min: Float, max: Float): Unit

  386. def setCriterion(optimizer: Optimizer[T, MiniBatch[T]], criterion: Criterion[T]): Unit

  387. def setFeatureSizeDLClassifierModel(dlClassifierModel: DLClassifierModel[T], featureSize: ArrayList[Int]): DLClassifierModel[T]

  388. def setFeatureSizeDLModel(dlModel: DLModel[T], featureSize: ArrayList[Int]): DLModel[T]

  389. def setInitMethod(layer: Initializable, initMethods: ArrayList[InitializationMethod]): layer.type

  390. def setInitMethod(layer: Initializable, weightInitMethod: InitializationMethod, biasInitMethod: InitializationMethod): layer.type

  391. def setL2NormClip(optimizer: Optimizer[T, MiniBatch[T]], normValue: Float): Unit

  392. def setLabel(labelMap: Map[String, Float], imageFrame: ImageFrame): Unit

  393. def setLearningRateDLClassifier(classifier: DLClassifier[T], lr: Double): DLClassifier[T]

  394. def setLearningRateDLEstimator(estimator: DLEstimator[T], lr: Double): DLEstimator[T]

  395. def setMaxEpochDLClassifier(classifier: DLClassifier[T], maxEpoch: Int): DLClassifier[T]

  396. def setMaxEpochDLEstimator(estimator: DLEstimator[T], maxEpoch: Int): DLEstimator[T]

  397. def setModelSeed(seed: Long): Unit

  398. def setRunningMean(module: BatchNormalization[T], runningMean: JTensor): Unit

  399. def setRunningStd(module: BatchNormalization[T], runningStd: JTensor): Unit

  400. def setStopGradient(model: Graph[T], layers: List[String]): Graph[T]

  401. def setTrainData(optimizer: Optimizer[T, MiniBatch[T]], trainingRdd: JavaRDD[Sample], batchSize: Int): Unit

  402. def setTrainSummary(optimizer: Optimizer[T, MiniBatch[T]], summary: TrainSummary): Unit

  403. def setValSummary(optimizer: Optimizer[T, MiniBatch[T]], summary: ValidationSummary): Unit

  404. def setValidation(optimizer: Optimizer[T, MiniBatch[T]], batchSize: Int, trigger: Trigger, xVal: List[JTensor], yVal: JTensor, vMethods: List[ValidationMethod[T]]): Unit

  405. def setValidation(optimizer: Optimizer[T, MiniBatch[T]], batchSize: Int, trigger: Trigger, valRdd: JavaRDD[Sample], vMethods: List[ValidationMethod[T]]): Unit

  406. def setValidationFromDataSet(optimizer: Optimizer[T, MiniBatch[T]], batchSize: Int, trigger: Trigger, valDataSet: DataSet[ImageFeature], vMethods: List[ValidationMethod[T]]): Unit

  407. def setWeights(model: AbstractModule[Activity, Activity, T], weights: List[JTensor]): Unit

  408. def showBigDlInfoLogs(): Unit

  409. def summaryReadScalar(summary: Summary, tag: String): List[List[Any]]

  410. def summarySetTrigger(summary: TrainSummary, summaryName: String, trigger: Trigger): TrainSummary

  411. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  412. def testSample(sample: Sample): Sample

  413. def testTensor(jTensor: JTensor): JTensor

  414. def toJSample(psamples: RDD[Sample]): RDD[dataset.Sample[T]]

  415. def toJSample(record: Sample): dataset.Sample[T]

  416. def toJTensor(tensor: Tensor[T]): JTensor

  417. def toPySample(sample: dataset.Sample[T]): Sample

  418. def toSampleArray(Xs: List[Tensor[T]], y: Tensor[T] = null): Array[dataset.Sample[T]]

  419. def toString(): String

    Definition Classes
    AnyRef → Any
  420. def toTensor(jTensor: JTensor): Tensor[T]

  421. def trainTF(modelPath: String, output: String, samples: JavaRDD[Sample], optMethod: OptimMethod[T], criterion: Criterion[T], batchSize: Int, endWhen: Trigger): AbstractModule[Activity, Activity, T]

  422. def transformImageFeature(transformer: FeatureTransformer, feature: ImageFeature): ImageFeature

  423. def transformImageFrame(transformer: FeatureTransformer, imageFrame: ImageFrame): ImageFrame

  424. def unFreeze(model: AbstractModule[Activity, Activity, T], names: List[String]): AbstractModule[Activity, Activity, T]

  425. def uniform(a: Double, b: Double, size: List[Int]): JTensor

  426. def updateParameters(model: AbstractModule[Activity, Activity, T], lr: Double): Unit

  427. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  428. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  429. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  430. def writeParquet(path: String, output: String, sc: JavaSparkContext, partitionNum: Int = 1): Unit

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped