Class

com.intel.analytics.bigdl.tensor.DnnTensor

DnnTensorUnsupportOperations

Related Doc: package DnnTensor

Permalink

class DnnTensorUnsupportOperations[T] extends Tensor[T]

Linear Supertypes
Tensor[T], Activity, TensorMath[T], Serializable, AnyRef, Any
Known Subclasses
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. DnnTensorUnsupportOperations
  2. Tensor
  3. Activity
  4. TensorMath
  5. Serializable
  6. AnyRef
  7. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new DnnTensorUnsupportOperations()(implicit arg0: ClassTag[T], ev: TensorNumeric[T])

    Permalink

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. def *(t: Tensor[T]): Tensor[T]

    Permalink

    Multiply a Tensor by another one, return the result in new allocated memory.

    Multiply a Tensor by another one, return the result in new allocated memory. The number of elements in the Tensors must match, but the sizes do not matter. The size of the returned Tensor will be the size of the first Tensor

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  4. def *(s: T): Tensor[T]

    Permalink

    multiply all elements of this with value not in place.

    multiply all elements of this with value not in place. It will allocate new memory.

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  5. def +(t: Tensor[T]): Tensor[T]

    Permalink

    Add a Tensor to another one, return the result in new allocated memory.

    Add a Tensor to another one, return the result in new allocated memory. The number of elements in the Tensors must match, but the sizes do not matter. The size of the returned Tensor will be the size of the first Tensor

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  6. def +(s: T): Tensor[T]

    Permalink

    Add all elements of this with value not in place.

    Add all elements of this with value not in place. It will allocate new memory.

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  7. def +(e: Either[Tensor[T], T]): Tensor[T]

    Permalink
    Definition Classes
    TensorMath
  8. def -(t: Tensor[T]): Tensor[T]

    Permalink

    Subtract a Tensor from another one, return the result in new allocated memory.

    Subtract a Tensor from another one, return the result in new allocated memory. The number of elements in the Tensors must match, but the sizes do not matter. The size of the returned Tensor will be the size of the first Tensor

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  9. def -(s: T): Tensor[T]

    Permalink

    subtract all elements of this with the value not in place.

    subtract all elements of this with the value not in place. It will allocate new memory.

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  10. def /(t: Tensor[T]): Tensor[T]

    Permalink

    Divide a Tensor by another one, return the result in new allocated memory.

    Divide a Tensor by another one, return the result in new allocated memory. The number of elements in the Tensors must match, but the sizes do not matter. The size of the returned Tensor will be the size of the first Tensor

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  11. def /(s: T): Tensor[T]

    Permalink

    divide all elements of this with value not in place.

    divide all elements of this with value not in place. It will allocate new memory.

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  12. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  13. def abs(x: Tensor[T]): Tensor[T]

    Permalink
  14. def abs(): Tensor[T]

    Permalink

    replaces all elements in-place with the absolute values of the elements of this.

    replaces all elements in-place with the absolute values of the elements of this.

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  15. def add(x: Tensor[T], y: Tensor[T]): Tensor[T]

    Permalink
  16. def add(value: T): Tensor[T]

    Permalink

    x.add(value) : add value to all elements of x in place.

    x.add(value) : add value to all elements of x in place.

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  17. def add(x: Tensor[T], value: T, y: Tensor[T]): Tensor[T]

    Permalink

    z.add(x, value, y) puts the result of x + value * y in z.

    z.add(x, value, y) puts the result of x + value * y in z.

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  18. def add(y: Tensor[T]): Tensor[T]

    Permalink

    accumulates all elements of y into this

    accumulates all elements of y into this

    y

    other tensor

    returns

    current tensor

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  19. def add(value: T, y: Tensor[T]): Tensor[T]

    Permalink

    x.add(value,y) multiply-accumulates values of y into x.

    x.add(value,y) multiply-accumulates values of y into x.

    value

    scalar

    y

    other tensor

    returns

    current tensor

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  20. def addMultiDimension(t: Tensor[T], dims: Array[Int]): Tensor[T]

    Permalink

    view this.tensor and add multiple Dimensions to dim dimension

    view this.tensor and add multiple Dimensions to dim dimension

    t

    source tensor

    returns

    this

    Definition Classes
    DnnTensorUnsupportOperationsTensor
  21. def addSingletonDimension(t: Tensor[T], dim: Int): Tensor[T]

    Permalink

    view this.tensor and add a Singleton Dimension to dim dimension

    view this.tensor and add a Singleton Dimension to dim dimension

    t

    source tensor

    dim

    the specific dimension, default is 1

    returns

    this

    Definition Classes
    DnnTensorUnsupportOperationsTensor
  22. def addcdiv(value: T, tensor1: Tensor[T], tensor2: Tensor[T]): Tensor[T]

    Permalink

    Performs the element-wise division of tensor1 by tensor2, multiply the result by the scalar value and add it to x.

    Performs the element-wise division of tensor1 by tensor2, multiply the result by the scalar value and add it to x. The number of elements must match, but sizes do not matter.

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  23. def addcmul(tensor1: Tensor[T], tensor2: Tensor[T]): Tensor[T]

    Permalink
  24. def addcmul(value: T, tensor1: Tensor[T], tensor2: Tensor[T]): Tensor[T]

    Permalink

    Performs the element-wise multiplication of tensor1 by tensor2, multiply the result by the scalar value (1 if not present) and add it to x.

    Performs the element-wise multiplication of tensor1 by tensor2, multiply the result by the scalar value (1 if not present) and add it to x. The number of elements must match, but sizes do not matter.

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  25. def addmm(v1: T, v2: T, mat1: Tensor[T], mat2: Tensor[T]): Tensor[T]

    Permalink

    res = v1 * res + v2 * mat1*mat2

    res = v1 * res + v2 * mat1*mat2

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  26. def addmm(v2: T, mat1: Tensor[T], mat2: Tensor[T]): Tensor[T]

    Permalink

    res = res + v2 * mat1 * mat2

    res = res + v2 * mat1 * mat2

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  27. def addmm(mat1: Tensor[T], mat2: Tensor[T]): Tensor[T]

    Permalink

    res = res + mat1 * mat2

    res = res + mat1 * mat2

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  28. def addmm(M: Tensor[T], mat1: Tensor[T], mat2: Tensor[T]): Tensor[T]

    Permalink

    res = M + (mat1*mat2)

    res = M + (mat1*mat2)

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  29. def addmm(v1: T, M: Tensor[T], v2: T, mat1: Tensor[T], mat2: Tensor[T]): Tensor[T]

    Permalink

    Performs a matrix-matrix multiplication between mat1 (2D tensor) and mat2 (2D tensor).

    Performs a matrix-matrix multiplication between mat1 (2D tensor) and mat2 (2D tensor). Optional values v1 and v2 are scalars that multiply M and mat1 * mat2 respectively. Optional value beta is a scalar that scales the result tensor, before accumulating the result into the tensor. Defaults to 1.0. If mat1 is a n x m matrix, mat2 a m x p matrix, M must be a n x p matrix.

    res = (v1 * M) + (v2 * mat1*mat2)

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  30. def addmv(alpha: T, mat: Tensor[T], vec2: Tensor[T]): Tensor[T]

    Permalink

    res = res + alpha * (mat * vec2)

    res = res + alpha * (mat * vec2)

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  31. def addmv(beta: T, alpha: T, mat: Tensor[T], vec2: Tensor[T]): Tensor[T]

    Permalink

    res = beta * res + alpha * (mat * vec2)

    res = beta * res + alpha * (mat * vec2)

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  32. def addmv(beta: T, vec1: Tensor[T], alpha: T, mat: Tensor[T], vec2: Tensor[T]): Tensor[T]

    Permalink

    Performs a matrix-vector multiplication between mat (2D Tensor) and vec2 (1D Tensor) and add it to vec1.

    Performs a matrix-vector multiplication between mat (2D Tensor) and vec2 (1D Tensor) and add it to vec1. Optional values v1 and v2 are scalars that multiply vec1 and vec2 respectively.

    In other words, res = (beta * vec1) + alpha * (mat * vec2)

    Sizes must respect the matrix-multiplication operation: if mat is a n × m matrix, vec2 must be vector of size m and vec1 must be a vector of size n.

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  33. def addr(v1: T, t1: Tensor[T], v2: T, t2: Tensor[T], t3: Tensor[T]): Tensor[T]

    Permalink

    Performs the outer-product between vec1 (1D Tensor) and vec2 (1D Tensor).

    Performs the outer-product between vec1 (1D Tensor) and vec2 (1D Tensor). Optional values v1 and v2 are scalars that multiply mat and vec1 [out] vec2 respectively. In other words,res_ij = (v1 * mat_ij) + (v2 * vec1_i * vec2_j)

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  34. def addr(v1: T, t1: Tensor[T], v2: T, t2: Tensor[T]): Tensor[T]

    Permalink
  35. def addr(v1: T, t1: Tensor[T], t2: Tensor[T]): Tensor[T]

    Permalink
  36. def addr(t1: Tensor[T], t2: Tensor[T]): Tensor[T]

    Permalink

    Performs the outer-product between vec1 (1D tensor) and vec2 (1D tensor).

    Performs the outer-product between vec1 (1D tensor) and vec2 (1D tensor). Optional values v1 and v2 are scalars that multiply mat and vec1 [out] vec2 respectively. In other words, res_ij = (v1 * mat_ij) + (v2 * vec1_i * vec2_j)

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  37. def almostEqual(other: Tensor[T], delta: Double): Boolean

    Permalink

    Compare with other tensor.

    Compare with other tensor. The shape of the other tensor must be same with this tensor. If element wise difference is less than delta, return true.

    Definition Classes
    Tensor
  38. def apply(t: Table): Tensor[T]

    Permalink

    Subset the tensor by apply the elements of the given table to the corresponding dimension of the tensor.

    Subset the tensor by apply the elements of the given table to the corresponding dimension of the tensor. The elements of the given table can be an Int or another Table. An Int means select on current dimension; A table means narrow on current dimension, the table should have two elements, of which the first is the start index and the second is the end index. An empty table is equal to Table(1, size_of_current_dimension) If the table length is less than the tensor dimension, each missing dimension is token up by an empty table

    t

    The table length should be less than or equal to the tensor dimensions

    Definition Classes
    DnnTensorUnsupportOperationsTensor
    See also

    narrow

    select

  39. def apply(indexes: Array[Int]): T

    Permalink

    Query the value on a given index.

    Query the value on a given index. Tensor should not be empty

    indexes

    the indexes length should be same as the tensor dimension length and each value count from 1

    returns

    the value on the given index

    Definition Classes
    DnnTensorUnsupportOperationsTensor
  40. def apply(index: Int): Tensor[T]

    Permalink

    Query tensor on a given index.

    Query tensor on a given index. Tensor should not be empty

    index

    count from 1

    Definition Classes
    DnnTensorUnsupportOperationsTensor
  41. def apply1(func: (T) ⇒ T): Tensor[T]

    Permalink

    Apply a function to each element of the tensor and modified it value if it return a double

    Apply a function to each element of the tensor and modified it value if it return a double

    func

    applied function

    returns

    current tensor

    Definition Classes
    DnnTensorUnsupportOperationsTensor
  42. def applyFun[A](t: Tensor[A], func: (A) ⇒ T)(implicit arg0: ClassManifest[A]): Tensor[T]

    Permalink

    Apply a function to each element of the tensor t and set each value to self

    Apply a function to each element of the tensor t and set each value to self

    t

    tensor to be modified

    func

    applied function

    returns

    current tensor

    Definition Classes
    DnnTensorUnsupportOperationsTensor
  43. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  44. def baddbmm(alpha: T, batch1: Tensor[T], batch2: Tensor[T]): Tensor[T]

    Permalink

    res_i = res_i + (alpha * batch1_i * batch2_i)

    res_i = res_i + (alpha * batch1_i * batch2_i)

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  45. def baddbmm(beta: T, alpha: T, batch1: Tensor[T], batch2: Tensor[T]): Tensor[T]

    Permalink

    res_i = (beta * res_i) + (alpha * batch1_i * batch2_i)

    res_i = (beta * res_i) + (alpha * batch1_i * batch2_i)

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  46. def baddbmm(beta: T, M: Tensor[T], alpha: T, batch1: Tensor[T], batch2: Tensor[T]): Tensor[T]

    Permalink

    Perform a batch matrix matrix multiplication of matrices and stored in batch1 and batch2 with batch add.

    Perform a batch matrix matrix multiplication of matrices and stored in batch1 and batch2 with batch add. batch1 and batch2 must be 3D Tensors each containing the same number of matrices. If batch1 is a b × n × m Tensor, batch2 a b × m × p Tensor, res will be a b × n × p Tensor.

    In other words, res_i = (beta * M_i) + (alpha * batch1_i * batch2_i)

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  47. def bernoulli(p: Double): Tensor[T]

    Permalink

    Fill with random value(bernoulli distribution).

    Fill with random value(bernoulli distribution). It will change the value of the current tensor and return itself

    returns

    current tensor

    Definition Classes
    DnnTensorUnsupportOperationsTensor
  48. def bmm(batch1: Tensor[T], batch2: Tensor[T]): Tensor[T]

    Permalink

    res_i = res_i + batch1_i * batch2_i

    res_i = res_i + batch1_i * batch2_i

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  49. def cast[D](castTensor: Tensor[D])(implicit arg0: ClassManifest[D], ev: TensorNumeric[D]): Tensor[D]

    Permalink

    Cast the currenct tensor to a tensor with tensor numeric type D and set cast value to castTensor

    Cast the currenct tensor to a tensor with tensor numeric type D and set cast value to castTensor

    D

    new numeric type

    castTensor

    the cast value set to this tensor

    returns

    return castTensort

    Definition Classes
    DnnTensorUnsupportOperationsTensor
  50. def cdiv(x: Tensor[T], y: Tensor[T]): Tensor[T]

    Permalink

    Element-wise divide z.cdiv(x, y) means z = x / y

    Element-wise divide z.cdiv(x, y) means z = x / y

    x

    tensor

    y

    tensor

    returns

    current tensor

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  51. def cdiv(y: Tensor[T]): Tensor[T]

    Permalink

    Element-wise divide x.cdiv(y) all elements of x divide all elements of y.

    Element-wise divide x.cdiv(y) all elements of x divide all elements of y. x = x / y

    y

    tensor

    returns

    current tensor

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  52. def ceil(): Tensor[T]

    Permalink

    Replaces all elements in-place with the ceil result of elements

    Replaces all elements in-place with the ceil result of elements

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  53. def clamp(min: Double, max: Double): Tensor[T]

    Permalink
  54. def clone(): Tensor[T]

    Permalink

    Get a new tensor with same value and different storage

    Get a new tensor with same value and different storage

    returns

    new tensor

    Definition Classes
    Tensor → AnyRef
  55. def cmax(x: Tensor[T], y: Tensor[T]): Tensor[T]

    Permalink

    stores the element-wise maximum of x and y in z.

    stores the element-wise maximum of x and y in z. z.cmax(x, y) means z = max(x, y)

    x

    tensor

    y

    tensor

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  56. def cmax(y: Tensor[T]): Tensor[T]

    Permalink

    stores the element-wise maximum of x and y in x.

    stores the element-wise maximum of x and y in x. x.cmax(y) = max(x, y)

    y

    tensor

    returns

    current tensor

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  57. def cmax(value: T): Tensor[T]

    Permalink

    For each elements of the tensor, performs the max operation compared with the given value vector.

    For each elements of the tensor, performs the max operation compared with the given value vector.

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  58. def cmin(x: Tensor[T], y: Tensor[T]): Tensor[T]

    Permalink

    stores the element-wise maximum of x and y in z.

    stores the element-wise maximum of x and y in z. z.cmin(x, y) means z = min(x, y)

    x

    tensor

    y

    tensor

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  59. def cmin(y: Tensor[T]): Tensor[T]

    Permalink

    stores the element-wise maximum of x and y in x.

    stores the element-wise maximum of x and y in x. x.cmin(y) = min(x, y)

    y

    tensor

    returns

    current tensor

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  60. def cmul(x: Tensor[T], y: Tensor[T]): Tensor[T]

    Permalink

    Element-wise multiply z.cmul(x, y) equals z = x * y

    Element-wise multiply z.cmul(x, y) equals z = x * y

    x

    tensor

    y

    tensor

    returns

    current tensor

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  61. def cmul(y: Tensor[T]): Tensor[T]

    Permalink

    Element-wise multiply x.cmul(y) multiplies all elements of x with corresponding elements of y.

    Element-wise multiply x.cmul(y) multiplies all elements of x with corresponding elements of y. x = x * y

    y

    tensor

    returns

    current tensor

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  62. def contiguous(): Tensor[T]

    Permalink

    Get a contiguous tensor from current tensor

    Get a contiguous tensor from current tensor

    returns

    the current tensor if it's contiguous; or a new contiguous tensor with separated storage

    Definition Classes
    DnnTensorUnsupportOperationsTensor
  63. def conv2(kernel: Tensor[T], vf: Char): Tensor[T]

    Permalink

    This function computes 2 dimensional convolution of a single image with a single kernel (2D output).

    This function computes 2 dimensional convolution of a single image with a single kernel (2D output). the dimensions of input and kernel need to be 2, and Input image needs to be bigger than kernel. The last argument controls if the convolution is a full ('F') or valid ('V') convolution. The default is valid convolution.

    vf

    full ('F') or valid ('V') convolution.

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  64. def copy(other: Tensor[T]): Tensor[T]

    Permalink

    Copy the value of the given tensor to the current.

    Copy the value of the given tensor to the current. They should have same size. It will use the old storage

    other

    source tensor

    returns

    current tensor

    Definition Classes
    DnnTensorUnsupportOperationsTensor
  65. def diff(other: Tensor[T], count: Int, reverse: Boolean): Boolean

    Permalink

    Compare and print differences between two tensors

    Compare and print differences between two tensors

    returns

    true if there's difference, vice versa

    Definition Classes
    DnnTensorUnsupportOperationsTensor
  66. def digamma(): Tensor[T]

    Permalink

    Computes Psi, the derivative of Lgamma (the log of the absolute value of Gamma(x)), element-wise and update the content inplace

    Computes Psi, the derivative of Lgamma (the log of the absolute value of Gamma(x)), element-wise and update the content inplace

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  67. def dim(): Int

    Permalink

    A shortcut of nDimension()

    A shortcut of nDimension()

    Definition Classes
    DnnTensorUnsupportOperationsTensor
    See also

    nDimension()

  68. def dist(y: Tensor[T], norm: Int): T

    Permalink

    Performs the p-norm distance calculation between two tensors

    Performs the p-norm distance calculation between two tensors

    y

    the secode Tensor

    norm

    the norm of distance

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  69. def div(y: Tensor[T]): Tensor[T]

    Permalink

    Element-wise divide x.div(y) all elements of x divide all elements of y.

    Element-wise divide x.div(y) all elements of x divide all elements of y. x = x / y

    y

    tensor

    returns

    current tensor

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  70. def div(value: T): Tensor[T]

    Permalink

    divide all elements of this with value in-place.

    divide all elements of this with value in-place.

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  71. def dot(y: Tensor[T]): T

    Permalink

    Performs the dot product.

    Performs the dot product. The number of elements must match: both Tensors are seen as a 1D vector.

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  72. def emptyInstance(): Tensor[T]

    Permalink

    return a new empty tensor of the same type

    return a new empty tensor of the same type

    returns

    new tensor

    Definition Classes
    DnnTensorUnsupportOperationsTensor
  73. def eq(x: Tensor[T], y: T): Tensor[T]

    Permalink

    Implements == operator comparing each element in x with y

    Implements == operator comparing each element in x with y

    returns

    current tensor reference

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  74. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  75. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  76. def erf(): Tensor[T]

    Permalink

    Computes the reciprocal of this tensor element-wise and update the content inplace

    Computes the reciprocal of this tensor element-wise and update the content inplace

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  77. def erfc(): Tensor[T]

    Permalink

    Computes the reciprocal of this tensor element-wise and update the content inplace

    Computes the reciprocal of this tensor element-wise and update the content inplace

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  78. def exp(): Tensor[T]

    Permalink
  79. def exp(y: Tensor[T]): Tensor[T]

    Permalink
  80. def expand(sizes: Array[Int]): Tensor[T]

    Permalink

    Expanding a tensor allocates new memory, tensor where singleton dimensions can be expanded to multiple ones by setting the stride to 0.

    Expanding a tensor allocates new memory, tensor where singleton dimensions can be expanded to multiple ones by setting the stride to 0. Any dimension that has size 1 can be expanded to arbitrary value with new memory allocation. Attempting to expand along a dimension that does not have size 1 will result in an error.

    sizes

    the size that tensor will expend to

    Definition Classes
    DnnTensorUnsupportOperationsTensor
  81. def expandAs(template: Tensor[T]): Tensor[T]

    Permalink

    This is equivalent to this.expand(template.size())

    This is equivalent to this.expand(template.size())

    template

    the given tensor

    Definition Classes
    DnnTensorUnsupportOperationsTensor
  82. def fill(v: T): Tensor[T]

    Permalink

    Fill with a given value.

    Fill with a given value. It will change the value of the current tensor and return itself

    v

    value to fill the tensor

    returns

    current tensor

    Definition Classes
    DnnTensorUnsupportOperationsTensor
  83. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  84. def floor(): Tensor[T]

    Permalink

    Replaces all elements in-place with the floor result of elements

    Replaces all elements in-place with the floor result of elements

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  85. def floor(y: Tensor[T]): Tensor[T]

    Permalink

    Populate the given tensor with the floor result of elements

    Populate the given tensor with the floor result of elements

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  86. def forceFill(v: Any): Tensor[T]

    Permalink

    Fill with a given value.

    Fill with a given value. It will change the value of the current tensor and return itself

    Note the value should be an instance of T

    v

    value to fill the tensor

    returns

    current tensor

    Definition Classes
    DnnTensorUnsupportOperationsTensor
  87. def gather(dim: Int, index: Tensor[T], src: Tensor[T]): Tensor[T]

    Permalink

    change this tensor with values from the original tensor by gathering a number of values from each "row", where the rows are along the dimension dim.

    change this tensor with values from the original tensor by gathering a number of values from each "row", where the rows are along the dimension dim.

    returns

    this

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  88. def ge(x: Tensor[T], value: Double): Tensor[T]

    Permalink

    Implements >= operator comparing each element in x with value

    Implements >= operator comparing each element in x with value

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  89. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  90. def getTensorNumeric(): TensorNumeric[T]

    Permalink

    Return tensor numeric

    Return tensor numeric

    Definition Classes
    DnnTensorUnsupportOperationsTensor
  91. def getTensorType: TensorType

    Permalink

    Return tensor type

    Return tensor type

    returns

    Dense / Quant

    Definition Classes
    DnnTensorUnsupportOperationsTensor
  92. def getType(): TensorDataType

    Permalink

    return the tensor datatype( DoubleType or FloatType)

    return the tensor datatype( DoubleType or FloatType)

    Definition Classes
    DnnTensorUnsupportOperationsTensor
  93. def gt(x: Tensor[T], y: Tensor[T]): Tensor[T]

    Permalink

    Implements > operator comparing each element in x with y

    Implements > operator comparing each element in x with y

    returns

    current tensor reference

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  94. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  95. def index(dim: Int, index: Tensor[T], y: Tensor[T]): Tensor[T]

    Permalink

    Accumulate the elements of tensor into the original tensor by adding to the indices in the order given in index.

    Accumulate the elements of tensor into the original tensor by adding to the indices in the order given in index. The shape of tensor must exactly match the elements indexed or an error will be thrown.

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  96. def indexAdd(dim: Int, index: Tensor[T], y: Tensor[T]): Tensor[T]

    Permalink

    Accumulate the elements of tensor into the original tensor by adding to the indices in the order given in index.

    Accumulate the elements of tensor into the original tensor by adding to the indices in the order given in index. The shape of tensor must exactly match the elements indexed or an error will be thrown.

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  97. def inv(): Tensor[T]

    Permalink

    Computes the reciprocal of this tensor element-wise and update the content inplace

    Computes the reciprocal of this tensor element-wise and update the content inplace

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  98. def isContiguous(): Boolean

    Permalink

    Check if the tensor is contiguous on the storage

    Check if the tensor is contiguous on the storage

    returns

    true if it's contiguous

    Definition Classes
    DnnTensorUnsupportOperationsTensor
  99. def isEmpty: Boolean

    Permalink

    returns

    whether this tensor is an empty tensor. Note that nDimension == 0 is not sufficient to determine a tensor is empty, because a scalar tensor's nDimension is also 0.

    Definition Classes
    DnnTensorUnsupportOperationsTensor
  100. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  101. def isSameSizeAs(other: Tensor[_]): Boolean

    Permalink

    Check if the size is same with the give tensor

    Check if the size is same with the give tensor

    other

    tensor to be compared

    returns

    true if they have same size

    Definition Classes
    DnnTensorUnsupportOperationsTensor
  102. def isScalar: Boolean

    Permalink

    returns

    whether this tensor is a scalar

    Definition Classes
    DnnTensorUnsupportOperationsTensor
  103. def isTable: Boolean

    Permalink

    Return false because it's not a Table

    Return false because it's not a Table

    returns

    false

    Definition Classes
    TensorActivity
  104. def isTensor: Boolean

    Permalink

    Return true because it's a Tensor implemented from Activity

    Return true because it's a Tensor implemented from Activity

    returns

    true

    Definition Classes
    TensorActivity
  105. def le(x: Tensor[T], y: Tensor[T]): Tensor[T]

    Permalink

    Implements <= operator comparing each element in x with y

    Implements <= operator comparing each element in x with y

    returns

    current tensor reference

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  106. def log(): Tensor[T]

    Permalink
  107. def log(y: Tensor[T]): Tensor[T]

    Permalink

    Replaces all elements in-place with the elements of lnx

    Replaces all elements in-place with the elements of lnx

    returns

    current tensor reference

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  108. def log1p(): Tensor[T]

    Permalink
  109. def log1p(y: Tensor[T]): Tensor[T]

    Permalink
  110. def logGamma(): Tensor[T]

    Permalink

    Computes the log of the absolute value of Gamma(x) element-wise, and update the content inplace

    Computes the log of the absolute value of Gamma(x) element-wise, and update the content inplace

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  111. def lt(x: Tensor[T], y: Tensor[T]): Tensor[T]

    Permalink

    Implements < operator comparing each element in x with y

    Implements < operator comparing each element in x with y

    returns

    current tensor reference

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  112. def map(other: Tensor[T], func: (T, T) ⇒ T): Tensor[T]

    Permalink

    Map value of another tensor to corresponding value of current tensor and apply function on the two value and change the value of the current tensor The another tensor should has the same size of the current tensor

    Map value of another tensor to corresponding value of current tensor and apply function on the two value and change the value of the current tensor The another tensor should has the same size of the current tensor

    other

    another tensor

    func

    applied function

    returns

    current tensor

    Definition Classes
    DnnTensorUnsupportOperationsTensor
  113. def maskedCopy(mask: Tensor[T], y: Tensor[T]): Tensor[T]

    Permalink

    Copies the elements of tensor into mask locations of itself.

    Copies the elements of tensor into mask locations of itself.

    returns

    current tensor reference

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  114. def maskedFill(mask: Tensor[T], e: T): Tensor[T]

    Permalink

    Fills the masked elements of itself with value val

    Fills the masked elements of itself with value val

    returns

    current tensor reference

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  115. def maskedSelect(mask: Tensor[T], y: Tensor[T]): Tensor[T]

    Permalink

    Returns a new Tensor which contains all elements aligned to a 1 in the corresponding mask.

    Returns a new Tensor which contains all elements aligned to a 1 in the corresponding mask.

    returns

    current tensor reference

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  116. def max(values: Tensor[T], indices: Tensor[T], dim: Int): (Tensor[T], Tensor[T])

    Permalink

    performs the max operation over the dimension n

    performs the max operation over the dimension n

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  117. def max(dim: Int): (Tensor[T], Tensor[T])

    Permalink

    performs the max operation over the dimension n

    performs the max operation over the dimension n

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  118. def max(): T

    Permalink

    returns the single biggest element of x

    returns the single biggest element of x

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  119. def mean(dim: Int): Tensor[T]

    Permalink

    performs the mean operation over the dimension dim.

    performs the mean operation over the dimension dim.

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  120. def mean(): T

    Permalink

    returns the mean of all elements of this.

    returns the mean of all elements of this.

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  121. def min(values: Tensor[T], indices: Tensor[T], dim: Int): (Tensor[T], Tensor[T])

    Permalink

    performs the min operation over the dimension n

    performs the min operation over the dimension n

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  122. def min(dim: Int): (Tensor[T], Tensor[T])

    Permalink

    performs the min operation over the dimension n

    performs the min operation over the dimension n

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  123. def min(): T

    Permalink

    returns the single minimum element of x

    returns the single minimum element of x

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  124. def mm(mat1: Tensor[T], mat2: Tensor[T]): Tensor[T]

    Permalink

    res = mat1*mat2

    res = mat1*mat2

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  125. def mul(x: Tensor[T], value: T): Tensor[T]

    Permalink

    put the result of x * value in current tensor

    put the result of x * value in current tensor

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  126. def mul(value: T): Tensor[T]

    Permalink

    multiply all elements of this with value in-place.

    multiply all elements of this with value in-place.

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  127. def mv(mat: Tensor[T], vec2: Tensor[T]): Tensor[T]

    Permalink

    res = res + (mat * vec2)

    res = res + (mat * vec2)

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  128. def nDimension(): Int

    Permalink

    Dimension number of the tensor.

    Dimension number of the tensor. For empty tensor, its dimension number is 0

    returns

    dimension number

    Definition Classes
    DnnTensorUnsupportOperationsTensor
  129. def nElement(): Int

    Permalink

    Element number

    Element number

    returns

    element number

    Definition Classes
    DnnTensorUnsupportOperationsTensor
  130. def narrow(dim: Int, index: Int, size: Int): Tensor[T]

    Permalink

    Get a subset of the tensor on dim-th dimension.

    Get a subset of the tensor on dim-th dimension. The offset is given by index, and length is given by size. The important difference with select is that it will not reduce the dimension number. For Instance tensor = 1 2 3 4 5 6 tensor.narrow(1, 1, 1) is [1 2 3] tensor.narrow(2, 2, 2) is 2 3 5 6

    Definition Classes
    DnnTensorUnsupportOperationsTensor
  131. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  132. def negative(x: Tensor[T]): Tensor[T]

    Permalink

    Computes numerical negative value element-wise.

    Computes numerical negative value element-wise. y = -x

    returns

    this tensor

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  133. def norm(value: Int): T

    Permalink

    returns the sum of the n-norms on the Tensor x

    returns the sum of the n-norms on the Tensor x

    value

    the n-norms

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  134. def norm(y: Tensor[T], value: Int, dim: Int): Tensor[T]

    Permalink

    returns the p-norms of the Tensor x computed over the dimension dim.

    returns the p-norms of the Tensor x computed over the dimension dim.

    y

    result buffer

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  135. def notEqualValue(value: Double): Boolean

    Permalink

    Element wise inequality between tensor and given value

    Element wise inequality between tensor and given value

    Definition Classes
    Tensor
  136. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  137. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  138. def numNonZeroByRow(): Array[Int]

    Permalink

    Count the number of non-zero elements in first dimension.

    Count the number of non-zero elements in first dimension. For SparseTensor only.

    returns

    an array number of non-zero elements in first dimension.

    Definition Classes
    Tensor
  139. def pow(n: T): Tensor[T]

    Permalink
  140. def pow(y: Tensor[T], n: T): Tensor[T]

    Permalink

    Replaces all elements in-place with the elements of x to the power of n

    Replaces all elements in-place with the elements of x to the power of n

    returns

    current tensor reference

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  141. def prod(x: Tensor[T], dim: Int): Tensor[T]

    Permalink
  142. def prod(): T

    Permalink

    returns the product of the elements of this

    returns the product of the elements of this

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  143. def rand(lowerBound: Double, upperBound: Double): Tensor[T]

    Permalink

    Fill with random value(uniform distribution between [lowerBound, upperBound]) It will change the value of the current tensor and return itself

    Fill with random value(uniform distribution between [lowerBound, upperBound]) It will change the value of the current tensor and return itself

    returns

    current tensor

    Definition Classes
    DnnTensorUnsupportOperationsTensor
  144. def rand(): Tensor[T]

    Permalink

    Fill with random value(uniform distribution).

    Fill with random value(uniform distribution). It will change the value of the current tensor and return itself

    returns

    current tensor

    Definition Classes
    DnnTensorUnsupportOperationsTensor
  145. def randn(mean: Double, stdv: Double): Tensor[T]

    Permalink

    Fill with random value(normal gaussian distribution with the specified mean and stdv).

    Fill with random value(normal gaussian distribution with the specified mean and stdv). It will change the value of the current tensor and return itself

    returns

    current tensor

    Definition Classes
    DnnTensorUnsupportOperationsTensor
  146. def randn(): Tensor[T]

    Permalink

    Fill with random value(normal gaussian distribution).

    Fill with random value(normal gaussian distribution). It will change the value of the current tensor and return itself

    returns

    current tensor

    Definition Classes
    DnnTensorUnsupportOperationsTensor
  147. def range(xmin: Double, xmax: Double, step: Int): Tensor[T]

    Permalink

    resize this tensor size to floor((xmax - xmin) / step) + 1 and set values from xmin to xmax with step (default to 1).

    resize this tensor size to floor((xmax - xmin) / step) + 1 and set values from xmin to xmax with step (default to 1).

    returns

    this tensor

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  148. def reduce(dim: Int, result: Tensor[T], reducer: (T, T) ⇒ T): Tensor[T]

    Permalink

    Reduce along the given dimension with the given reducer, and copy the result to the result tensor

    Reduce along the given dimension with the given reducer, and copy the result to the result tensor

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  149. def repeatTensor(sizes: Array[Int]): Tensor[T]

    Permalink

    Repeating a tensor allocates new memory, unless result is provided, in which case its memory is resized.

    Repeating a tensor allocates new memory, unless result is provided, in which case its memory is resized. sizes specify the number of times the tensor is repeated in each dimension.

    Definition Classes
    DnnTensorUnsupportOperationsTensor
  150. def reshape(sizes: Array[Int]): Tensor[T]

    Permalink

    create a new tensor without any change of the tensor

    create a new tensor without any change of the tensor

    sizes

    the size of the new Tensor

    Definition Classes
    DnnTensorUnsupportOperationsTensor
  151. def resize(size1: Int, size2: Int, size3: Int, size4: Int, size5: Int): Tensor[T]

    Permalink
    Definition Classes
    DnnTensorUnsupportOperationsTensor
  152. def resize(size1: Int, size2: Int, size3: Int, size4: Int): Tensor[T]

    Permalink
    Definition Classes
    DnnTensorUnsupportOperationsTensor
  153. def resize(size1: Int, size2: Int, size3: Int): Tensor[T]

    Permalink
    Definition Classes
    DnnTensorUnsupportOperationsTensor
  154. def resize(size1: Int, size2: Int): Tensor[T]

    Permalink
    Definition Classes
    DnnTensorUnsupportOperationsTensor
  155. def resize(size1: Int): Tensor[T]

    Permalink
    Definition Classes
    DnnTensorUnsupportOperationsTensor
  156. def resize(sizes: Array[Int], strides: Array[Int]): Tensor[T]

    Permalink

    Resize the current tensor to the give shape

    Resize the current tensor to the give shape

    sizes

    Array describe the size

    strides

    Array describe the jumps

    Definition Classes
    DnnTensorUnsupportOperationsTensor
  157. def resize(sizes: Array[Int], nElement: Int): Tensor[T]

    Permalink
    Definition Classes
    Tensor
  158. def resizeAs(src: Tensor[_]): Tensor[T]

    Permalink

    Resize the current tensor to the same size of the given tensor.

    Resize the current tensor to the same size of the given tensor. It will still use the same storage if the storage is sufficient for the new size

    src

    target tensor

    returns

    current tensor

    Definition Classes
    DnnTensorUnsupportOperationsTensor
  159. def save(path: String, overWrite: Boolean): DnnTensorUnsupportOperations.this.type

    Permalink

    Save the tensor to given path

    Save the tensor to given path

    Definition Classes
    DnnTensorUnsupportOperationsTensor
  160. def scatter(dim: Int, index: Tensor[T], src: Tensor[T]): Tensor[T]

    Permalink

    Writes all values from tensor src into this tensor at the specified indices

    Writes all values from tensor src into this tensor at the specified indices

    returns

    this

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  161. def select(dim: Int, index: Int): Tensor[T]

    Permalink

    Remove the dim-th dimension and return the subset part.

    Remove the dim-th dimension and return the subset part. For instance tensor = 1 2 3 4 5 6 tensor.select(1, 1) is [1 2 3] tensor.select(1, 2) is [4 5 6] tensor.select(2, 3) is [3 6]

    Definition Classes
    DnnTensorUnsupportOperationsTensor
  162. def set(): Tensor[T]

    Permalink

    Shrunk the size of the storage to 0, and also the tensor size

    Shrunk the size of the storage to 0, and also the tensor size

    Definition Classes
    DnnTensorUnsupportOperationsTensor
  163. def set(storage: Storage[T], storageOffset: Int, sizes: Array[Int], strides: Array[Int]): Tensor[T]

    Permalink

    The Tensor is now going to "view" the given storage, starting at position storageOffset (>=1) with the given dimension sizes and the optional given strides.

    The Tensor is now going to "view" the given storage, starting at position storageOffset (>=1) with the given dimension sizes and the optional given strides. As the result, any modification in the elements of the Storage will have an impact on the elements of the Tensor, and vice-versa. This is an efficient method, as there is no memory copy!

    If only storage is provided, the whole storage will be viewed as a 1D Tensor.

    returns

    current tensor

    Definition Classes
    DnnTensorUnsupportOperationsTensor
  164. def set(other: Tensor[T]): Tensor[T]

    Permalink

    The Tensor is now going to "view" the same storage as the given tensor.

    The Tensor is now going to "view" the same storage as the given tensor. As the result, any modification in the elements of the Tensor will have an impact on the elements of the given tensor, and vice-versa. This is an efficient method, as there is no memory copy!

    other

    the given tensor

    returns

    current tensor

    Definition Classes
    DnnTensorUnsupportOperationsTensor
  165. def setValue(d1: Int, d2: Int, d3: Int, d4: Int, d5: Int, value: T): DnnTensorUnsupportOperations.this.type

    Permalink
    Definition Classes
    DnnTensorUnsupportOperationsTensor
  166. def setValue(d1: Int, d2: Int, d3: Int, d4: Int, value: T): DnnTensorUnsupportOperations.this.type

    Permalink
    Definition Classes
    DnnTensorUnsupportOperationsTensor
  167. def setValue(d1: Int, d2: Int, d3: Int, value: T): DnnTensorUnsupportOperations.this.type

    Permalink
    Definition Classes
    DnnTensorUnsupportOperationsTensor
  168. def setValue(d1: Int, d2: Int, value: T): DnnTensorUnsupportOperations.this.type

    Permalink
    Definition Classes
    DnnTensorUnsupportOperationsTensor
  169. def setValue(d1: Int, value: T): DnnTensorUnsupportOperations.this.type

    Permalink

    Write the value on a given position.

    Write the value on a given position. The number of parameters should be equal to the dimension number of the tensor.

    value

    the written value

    Definition Classes
    DnnTensorUnsupportOperationsTensor
  170. def setValue(value: T): DnnTensorUnsupportOperations.this.type

    Permalink

    Set value for a scalar tensor

    Set value for a scalar tensor

    value

    the written value

    Definition Classes
    DnnTensorUnsupportOperationsTensor
  171. def shallowClone(): Tensor[T]

    Permalink

    Get a new tensor with same storage.

    Get a new tensor with same storage.

    returns

    new tensor

    Definition Classes
    Tensor
  172. def sign(): Tensor[T]

    Permalink

    returns a new Tensor with the sign (+/- 1 or 0) of the elements of x.

    returns a new Tensor with the sign (+/- 1 or 0) of the elements of x.

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  173. def size(dim: Int): Int

    Permalink

    size of the tensor on the given dimension

    size of the tensor on the given dimension

    dim

    dimension, count from 1

    returns

    size

    Definition Classes
    DnnTensorUnsupportOperationsTensor
  174. def size(): Array[Int]

    Permalink

    Size of tensor.

    Size of tensor. Return an array of which each value represents the size on the dimension(i + 1), i is the index of the corresponding value. It will generate a new array each time method is invoked.

    returns

    size array

    Definition Classes
    DnnTensorUnsupportOperationsTensor
  175. def split(dim: Int): Array[Tensor[T]]

    Permalink

    spilt one tensor into multi tensor along the dim dimension

    spilt one tensor into multi tensor along the dim dimension

    dim

    the specific dimension

    Definition Classes
    DnnTensorUnsupportOperationsTensor
  176. def split(size: Int, dim: Int): Array[Tensor[T]]

    Permalink

    Splits current tensor along dimension dim into a result table of Tensors of size size (a number) or less (in the case of the last Tensor).

    Splits current tensor along dimension dim into a result table of Tensors of size size (a number) or less (in the case of the last Tensor). The sizes of the non-dim dimensions remain unchanged. Internally, a series of narrows are performed along dimensions dim. Argument dim defaults to 1.

    Definition Classes
    DnnTensorUnsupportOperationsTensor
  177. def sqrt(y: Tensor[T]): Tensor[T]

    Permalink
  178. def sqrt(): Tensor[T]

    Permalink

    replaces all elements in-place with the square root of the elements of this.

    replaces all elements in-place with the square root of the elements of this.

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  179. def square(): Tensor[T]

    Permalink

    Replaces all elements in-place with the elements of x squared

    Replaces all elements in-place with the elements of x squared

    returns

    current tensor reference

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  180. def squeeze(dim: Int): Tensor[T]

    Permalink

    Removes given dimensions of the tensor if it's singleton

    Removes given dimensions of the tensor if it's singleton

    returns

    current tensor

    Definition Classes
    DnnTensorUnsupportOperationsTensor
  181. def squeeze(): Tensor[T]

    Permalink

    Removes all singleton dimensions of the tensor

    Removes all singleton dimensions of the tensor

    returns

    current tensor

    Definition Classes
    DnnTensorUnsupportOperationsTensor
  182. def squeezeNewTensor(): Tensor[T]

    Permalink

    Create a new tensor that removes all singleton dimensions of the tensor

    Create a new tensor that removes all singleton dimensions of the tensor

    returns

    create a new tensor

    Definition Classes
    DnnTensorUnsupportOperationsTensor
  183. def storage(): Storage[T]

    Permalink

    Get the storage

    Get the storage

    returns

    storage

    Definition Classes
    DnnTensorUnsupportOperationsTensor
  184. def storageOffset(): Int

    Permalink

    tensor offset on the storage

    tensor offset on the storage

    returns

    storage offset, count from 1

    Definition Classes
    DnnTensorUnsupportOperationsTensor
  185. def stride(dim: Int): Int

    Permalink

    Jumps between elements on the given dimension in the storage.

    Jumps between elements on the given dimension in the storage.

    dim

    dimension, count from 1

    returns

    jump

    Definition Classes
    DnnTensorUnsupportOperationsTensor
  186. def stride(): Array[Int]

    Permalink

    Jumps between elements on the each dimension in the storage.

    Jumps between elements on the each dimension in the storage. It will generate a new array each time method is invoked.

    returns

    strides array

    Definition Classes
    DnnTensorUnsupportOperationsTensor
  187. def sub(value: T): Tensor[T]

    Permalink
  188. def sub(x: Tensor[T], y: Tensor[T]): Tensor[T]

    Permalink
  189. def sub(y: Tensor[T]): Tensor[T]

    Permalink

    subtracts all elements of y from this

    subtracts all elements of y from this

    y

    other tensor

    returns

    current tensor

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  190. def sub(x: Tensor[T], value: T, y: Tensor[T]): Tensor[T]

    Permalink
  191. def sub(value: T, y: Tensor[T]): Tensor[T]

    Permalink
  192. def sum(x: Tensor[T], dim: Int): Tensor[T]

    Permalink
  193. def sum(dim: Int): Tensor[T]

    Permalink

    performs the sum operation over the dimension dim

    performs the sum operation over the dimension dim

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  194. def sum(): T

    Permalink

    returns the sum of the elements of this

    returns the sum of the elements of this

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  195. def sumSquare(): T

    Permalink
  196. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  197. def t(): Tensor[T]

    Permalink

    Shortcut of transpose(1, 2) for 2D tensor

    Shortcut of transpose(1, 2) for 2D tensor

    Definition Classes
    DnnTensorUnsupportOperationsTensor
    See also

    transpose()

  198. def tanh(y: Tensor[T]): Tensor[T]

    Permalink
  199. def tanh(): Tensor[T]

    Permalink

    replaces all elements in-place with the tanh root of the elements of this.

    replaces all elements in-place with the tanh root of the elements of this.

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  200. def toArray(): Array[T]

    Permalink

    Convert 1D tensor to an array.

    Convert 1D tensor to an array. If the tensor is not 1D, an exception will be thrown out.

    Definition Classes
    DnnTensorUnsupportOperationsTensor
  201. def toBreezeMatrix(): DenseMatrix[T]

    Permalink

    convert the tensor to BreezeMatrix, the dimension of the tensor need to be 2.

    convert the tensor to BreezeMatrix, the dimension of the tensor need to be 2.

    returns

    BrzDenseMatrix

    Definition Classes
    DnnTensorUnsupportOperationsTensor
  202. def toBreezeVector(): DenseVector[T]

    Permalink

    convert the tensor to BreezeVector, the dimension of the tensor need to be 1.

    convert the tensor to BreezeVector, the dimension of the tensor need to be 1.

    returns

    BrzDenseVector

    Definition Classes
    DnnTensorUnsupportOperationsTensor
  203. def toMLlibMatrix(): Matrix

    Permalink

    convert the tensor to MLlibMatrix, the dimension of the tensor need to be 2, and tensor need to be continuous.

    convert the tensor to MLlibMatrix, the dimension of the tensor need to be 2, and tensor need to be continuous.

    returns

    Matrix

    Definition Classes
    DnnTensorUnsupportOperationsTensor
  204. def toMLlibVector(): Vector

    Permalink

    convert the tensor to MLlibVector, the dimension of the tensor need to be 1, and tensor need to be continuous.

    convert the tensor to MLlibVector, the dimension of the tensor need to be 1, and tensor need to be continuous.

    returns

    Vector

    Definition Classes
    DnnTensorUnsupportOperationsTensor
  205. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  206. def toTable: Table

    Permalink
    Definition Classes
    TensorActivity
  207. def toTensor[D](implicit ev: TensorNumeric[D]): Tensor[D]

    Permalink
    Definition Classes
    DnnTensorUnsupportOperationsActivity
  208. def topk(k: Int, dim: Int, increase: Boolean, result: Tensor[T], indices: Tensor[T], sortedResult: Boolean): (Tensor[T], Tensor[T])

    Permalink

    Get the top k smallest values and their indices.

    Get the top k smallest values and their indices.

    dim

    dimension, default is the last dimension

    increase

    sort order, set it to true if you want to get the smallest top k values

    result

    result buffer

    indices

    indices buffer

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  209. def transpose(dim1: Int, dim2: Int): Tensor[T]

    Permalink

    * Create a new tensor which exchanges the given dimensions of the current tensor

    * Create a new tensor which exchanges the given dimensions of the current tensor

    dim1

    dimension to be exchanged, count from one

    dim2

    dimension to be exchanged, count from one

    returns

    new tensor

    Definition Classes
    DnnTensorUnsupportOperationsTensor
  210. def unary_-(): Tensor[T]

    Permalink
  211. def unfold(dim: Int, size: Int, step: Int): Tensor[T]

    Permalink

    Returns a tensor which contains all slices of size @param size in the dimension @param dim.

    Returns a tensor which contains all slices of size @param size in the dimension @param dim. Step between two slices is given by @param step.

    step

    Step between two slices

    returns

    new tensor

    Definition Classes
    DnnTensorUnsupportOperationsTensor
  212. def uniform(args: T*): T

    Permalink

    return pseudo-random numbers, require 0<=args.length<=2 if args.length = 0, return [0, 1) if args.length = 1, return [1, args(0)] or [args(0), 1] if args.length = 2, return [args(0), args(1)]

    return pseudo-random numbers, require 0<=args.length<=2 if args.length = 0, return [0, 1) if args.length = 1, return [1, args(0)] or [args(0), 1] if args.length = 2, return [args(0), args(1)]

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  213. def update(filter: (T) ⇒ Boolean, value: T): Unit

    Permalink

    Update the value meeting the filter criteria with the give value

    Update the value meeting the filter criteria with the give value

    filter

    filter

    value

    value to update

    Definition Classes
    DnnTensorUnsupportOperationsTensor
  214. def update(t: Table, src: Tensor[T]): Unit

    Permalink

    Copy the given tensor values to the selected subset of the current tensor Each element of the given table can be an Int or another Table.

    Copy the given tensor values to the selected subset of the current tensor Each element of the given table can be an Int or another Table. An Int means select on current dimension; A table means narrow on current dimension, the table should has two elements, of which the first is start index and the second is the end index. An empty table is equal to Table(1, size_of_current_dimension). If the table's length is smaller than the tensor's dimension, the missing dimension is applied by an empty table.

    t

    subset table

    src

    tensor to copy

    Definition Classes
    DnnTensorUnsupportOperationsTensor
  215. def update(t: Table, value: T): Unit

    Permalink

    Fill the select subset of the current tensor with the given value.

    Fill the select subset of the current tensor with the given value. The element of the given table can be an Int or another Table. An Int means select on current dimension; A table means narrow on the current dimension, the table should has two elements, of which the first is the start index and the second is the end index. An empty table is equal to Table(1, size_of_current_dimension) If the table length is less than the tensor dimension, each missing dimension is applied by an empty table

    t

    subset table

    value

    value to write

    Definition Classes
    DnnTensorUnsupportOperationsTensor
  216. def update(indexes: Array[Int], value: T): Unit

    Permalink

    Write the value to the positions indexed by the given index array

    Write the value to the positions indexed by the given index array

    indexes

    index array. It should has same length with the tensor dimension

    value

    value to write

    Definition Classes
    DnnTensorUnsupportOperationsTensor
  217. def update(index: Int, src: Tensor[T]): Unit

    Permalink

    Copy the give tensor value to the select subset of the current tensor by the given index.

    Copy the give tensor value to the select subset of the current tensor by the given index. The subset should have the same size of the given tensor

    index

    index

    src

    tensor to write

    Definition Classes
    DnnTensorUnsupportOperationsTensor
  218. def update(index: Int, value: T): Unit

    Permalink

    For tensor(i) = value.

    For tensor(i) = value. If tensor(i) is another tensor, it will fill the selected subset by the given value

    index

    index

    value

    value to write

    Definition Classes
    DnnTensorUnsupportOperationsTensor
  219. def value(): T

    Permalink

    returns

    the value of a scalar. Requires the tensor to be a scalar.

    Definition Classes
    DnnTensorUnsupportOperationsTensor
  220. def valueAt(d1: Int, d2: Int, d3: Int, d4: Int, d5: Int): T

    Permalink
    Definition Classes
    DnnTensorUnsupportOperationsTensor
  221. def valueAt(d1: Int, d2: Int, d3: Int, d4: Int): T

    Permalink
    Definition Classes
    DnnTensorUnsupportOperationsTensor
  222. def valueAt(d1: Int, d2: Int, d3: Int): T

    Permalink
    Definition Classes
    DnnTensorUnsupportOperationsTensor
  223. def valueAt(d1: Int, d2: Int): T

    Permalink
    Definition Classes
    DnnTensorUnsupportOperationsTensor
  224. def valueAt(d1: Int): T

    Permalink

    Query the value on a given position.

    Query the value on a given position. The number of parameters should be equal to the dimension number of the tensor. Tensor should not be empty.

    returns

    the value on a given position

    Definition Classes
    DnnTensorUnsupportOperationsTensor
  225. def view(sizes: Array[Int]): Tensor[T]

    Permalink
    Definition Classes
    DnnTensorUnsupportOperationsTensor
  226. def view(sizes: Int*): Tensor[T]

    Permalink

    Return a new tensor with specified sizes.

    Return a new tensor with specified sizes. The input tensor must be contiguous, and the elements number in the given sizes must be equal to the current tensor

    returns

    new tensor

    Definition Classes
    Tensor
  227. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  228. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  229. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  230. def xcorr2(kernel: Tensor[T], vf: Char): Tensor[T]

    Permalink

    This function operates with same options and input/output configurations as conv2, but performs cross-correlation of the input with the kernel k.

    This function operates with same options and input/output configurations as conv2, but performs cross-correlation of the input with the kernel k.

    vf

    full ('F') or valid ('V') convolution.

    Definition Classes
    DnnTensorUnsupportOperationsTensorMath
  231. def zero(): Tensor[T]

    Permalink

    Fill with zero.

    Fill with zero. It will change the value of the current tensor and return itself

    returns

    current tensor

    Definition Classes
    DnnTensorUnsupportOperationsTensor
  232. def zipWith[A, B](t1: Tensor[A], t2: Tensor[B], func: (A, B) ⇒ T)(implicit arg0: ClassManifest[A], arg1: ClassManifest[B]): Tensor[T]

    Permalink

    Zip values of two other tensors with applying the function func on each two values element-wisely and assign the result value to the current tensor

    Zip values of two other tensors with applying the function func on each two values element-wisely and assign the result value to the current tensor

    The two given tensors should has the same size of the current tensor

    A

    numeric type of tensor 1

    B

    numeric type of tensor 2

    t1

    tensor 1

    t2

    tensor 2

    func

    zip with the function

    returns

    self

    Definition Classes
    DnnTensorUnsupportOperationsTensor

Inherited from Tensor[T]

Inherited from Activity

Inherited from TensorMath[T]

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped