Trait

com.intel.analytics.bigdl.tensor

TensorMath

Related Doc: package tensor

Permalink

trait TensorMath[T] extends AnyRef

It provides multiple math operation functions for manipulating Tensor objects. All functions support both allocating a new Tensor to return the result and treating the caller as a target Tensor, in which case the target Tensor(s) will be resized accordingly and filled with the result. This property is especially useful when one wants to have tight control over when memory is allocated.

T

should be double or float

Linear Supertypes
AnyRef, Any
Known Subclasses
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. TensorMath
  2. AnyRef
  3. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Abstract Value Members

  1. abstract def *(t: Tensor[T]): Tensor[T]

    Permalink

    Multiply a Tensor by another one, return the result in new allocated memory.

    Multiply a Tensor by another one, return the result in new allocated memory. The number of elements in the Tensors must match, but the sizes do not matter. The size of the returned Tensor will be the size of the first Tensor

  2. abstract def *(s: T): Tensor[T]

    Permalink

    multiply all elements of this with value not in place.

    multiply all elements of this with value not in place. It will allocate new memory.

  3. abstract def +(t: Tensor[T]): Tensor[T]

    Permalink

    Add a Tensor to another one, return the result in new allocated memory.

    Add a Tensor to another one, return the result in new allocated memory. The number of elements in the Tensors must match, but the sizes do not matter. The size of the returned Tensor will be the size of the first Tensor

  4. abstract def +(s: T): Tensor[T]

    Permalink

    Add all elements of this with value not in place.

    Add all elements of this with value not in place. It will allocate new memory.

  5. abstract def -(t: Tensor[T]): Tensor[T]

    Permalink

    Subtract a Tensor from another one, return the result in new allocated memory.

    Subtract a Tensor from another one, return the result in new allocated memory. The number of elements in the Tensors must match, but the sizes do not matter. The size of the returned Tensor will be the size of the first Tensor

  6. abstract def -(s: T): Tensor[T]

    Permalink

    subtract all elements of this with the value not in place.

    subtract all elements of this with the value not in place. It will allocate new memory.

  7. abstract def /(t: Tensor[T]): Tensor[T]

    Permalink

    Divide a Tensor by another one, return the result in new allocated memory.

    Divide a Tensor by another one, return the result in new allocated memory. The number of elements in the Tensors must match, but the sizes do not matter. The size of the returned Tensor will be the size of the first Tensor

  8. abstract def /(s: T): Tensor[T]

    Permalink

    divide all elements of this with value not in place.

    divide all elements of this with value not in place. It will allocate new memory.

  9. abstract def abs(x: Tensor[T]): Tensor[T]

    Permalink
  10. abstract def abs(): Tensor[T]

    Permalink

    replaces all elements in-place with the absolute values of the elements of this.

  11. abstract def add(x: Tensor[T], y: Tensor[T]): Tensor[T]

    Permalink
  12. abstract def add(value: T): Tensor[T]

    Permalink

    x.add(value) : add value to all elements of x in place.

  13. abstract def add(x: Tensor[T], value: T, y: Tensor[T]): Tensor[T]

    Permalink

    z.add(x, value, y) puts the result of x + value * y in z.

  14. abstract def add(y: Tensor[T]): Tensor[T]

    Permalink

    accumulates all elements of y into this

    accumulates all elements of y into this

    y

    other tensor

    returns

    current tensor

  15. abstract def add(value: T, y: Tensor[T]): Tensor[T]

    Permalink

    x.add(value,y) multiply-accumulates values of y into x.

    x.add(value,y) multiply-accumulates values of y into x.

    value

    scalar

    y

    other tensor

    returns

    current tensor

  16. abstract def addcdiv(value: T, tensor1: Tensor[T], tensor2: Tensor[T]): Tensor[T]

    Permalink

    Performs the element-wise division of tensor1 by tensor2, multiply the result by the scalar value and add it to x.

    Performs the element-wise division of tensor1 by tensor2, multiply the result by the scalar value and add it to x. The number of elements must match, but sizes do not matter.

  17. abstract def addcmul(tensor1: Tensor[T], tensor2: Tensor[T]): Tensor[T]

    Permalink
  18. abstract def addcmul(value: T, tensor1: Tensor[T], tensor2: Tensor[T]): Tensor[T]

    Permalink

    Performs the element-wise multiplication of tensor1 by tensor2, multiply the result by the scalar value (1 if not present) and add it to x.

    Performs the element-wise multiplication of tensor1 by tensor2, multiply the result by the scalar value (1 if not present) and add it to x. The number of elements must match, but sizes do not matter.

  19. abstract def addmm(v1: T, v2: T, mat1: Tensor[T], mat2: Tensor[T]): Tensor[T]

    Permalink

    res = v1 * res + v2 * mat1*mat2

  20. abstract def addmm(v2: T, mat1: Tensor[T], mat2: Tensor[T]): Tensor[T]

    Permalink

    res = res + v2 * mat1 * mat2

  21. abstract def addmm(mat1: Tensor[T], mat2: Tensor[T]): Tensor[T]

    Permalink

    res = res + mat1 * mat2

  22. abstract def addmm(M: Tensor[T], mat1: Tensor[T], mat2: Tensor[T]): Tensor[T]

    Permalink

    res = M + (mat1*mat2)

  23. abstract def addmm(v1: T, M: Tensor[T], v2: T, mat1: Tensor[T], mat2: Tensor[T]): Tensor[T]

    Permalink

    Performs a matrix-matrix multiplication between mat1 (2D tensor) and mat2 (2D tensor).

    Performs a matrix-matrix multiplication between mat1 (2D tensor) and mat2 (2D tensor). Optional values v1 and v2 are scalars that multiply M and mat1 * mat2 respectively. Optional value beta is a scalar that scales the result tensor, before accumulating the result into the tensor. Defaults to 1.0. If mat1 is a n x m matrix, mat2 a m x p matrix, M must be a n x p matrix.

    res = (v1 * M) + (v2 * mat1*mat2)

  24. abstract def addmv(alpha: T, mat: Tensor[T], vec2: Tensor[T]): Tensor[T]

    Permalink

    res = res + alpha * (mat * vec2)

  25. abstract def addmv(beta: T, alpha: T, mat: Tensor[T], vec2: Tensor[T]): Tensor[T]

    Permalink

    res = beta * res + alpha * (mat * vec2)

  26. abstract def addmv(beta: T, vec1: Tensor[T], alpha: T, mat: Tensor[T], vec2: Tensor[T]): Tensor[T]

    Permalink

    Performs a matrix-vector multiplication between mat (2D Tensor) and vec2 (1D Tensor) and add it to vec1.

    Performs a matrix-vector multiplication between mat (2D Tensor) and vec2 (1D Tensor) and add it to vec1. Optional values v1 and v2 are scalars that multiply vec1 and vec2 respectively.

    In other words, res = (beta * vec1) + alpha * (mat * vec2)

    Sizes must respect the matrix-multiplication operation: if mat is a n × m matrix, vec2 must be vector of size m and vec1 must be a vector of size n.

  27. abstract def addr(v1: T, t1: Tensor[T], v2: T, t2: Tensor[T], t3: Tensor[T]): Tensor[T]

    Permalink

    Performs the outer-product between vec1 (1D Tensor) and vec2 (1D Tensor).

    Performs the outer-product between vec1 (1D Tensor) and vec2 (1D Tensor). Optional values v1 and v2 are scalars that multiply mat and vec1 [out] vec2 respectively. In other words,res_ij = (v1 * mat_ij) + (v2 * vec1_i * vec2_j)

  28. abstract def addr(v1: T, t1: Tensor[T], v2: T, t2: Tensor[T]): Tensor[T]

    Permalink
  29. abstract def addr(v1: T, t1: Tensor[T], t2: Tensor[T]): Tensor[T]

    Permalink
  30. abstract def addr(t1: Tensor[T], t2: Tensor[T]): Tensor[T]

    Permalink

    Performs the outer-product between vec1 (1D tensor) and vec2 (1D tensor).

    Performs the outer-product between vec1 (1D tensor) and vec2 (1D tensor). Optional values v1 and v2 are scalars that multiply mat and vec1 [out] vec2 respectively. In other words, res_ij = (v1 * mat_ij) + (v2 * vec1_i * vec2_j)

  31. abstract def baddbmm(alpha: T, batch1: Tensor[T], batch2: Tensor[T]): Tensor[T]

    Permalink

    res_i = res_i + (alpha * batch1_i * batch2_i)

  32. abstract def baddbmm(beta: T, alpha: T, batch1: Tensor[T], batch2: Tensor[T]): Tensor[T]

    Permalink

    res_i = (beta * res_i) + (alpha * batch1_i * batch2_i)

  33. abstract def baddbmm(beta: T, M: Tensor[T], alpha: T, batch1: Tensor[T], batch2: Tensor[T]): Tensor[T]

    Permalink

    Perform a batch matrix matrix multiplication of matrices and stored in batch1 and batch2 with batch add.

    Perform a batch matrix matrix multiplication of matrices and stored in batch1 and batch2 with batch add. batch1 and batch2 must be 3D Tensors each containing the same number of matrices. If batch1 is a b × n × m Tensor, batch2 a b × m × p Tensor, res will be a b × n × p Tensor.

    In other words, res_i = (beta * M_i) + (alpha * batch1_i * batch2_i)

  34. abstract def bmm(batch1: Tensor[T], batch2: Tensor[T]): Tensor[T]

    Permalink

    res_i = res_i + batch1_i * batch2_i

  35. abstract def cdiv(x: Tensor[T], y: Tensor[T]): Tensor[T]

    Permalink

    Element-wise divide z.cdiv(x, y) means z = x / y

    Element-wise divide z.cdiv(x, y) means z = x / y

    x

    tensor

    y

    tensor

    returns

    current tensor

  36. abstract def cdiv(y: Tensor[T]): Tensor[T]

    Permalink

    Element-wise divide x.cdiv(y) all elements of x divide all elements of y.

    Element-wise divide x.cdiv(y) all elements of x divide all elements of y. x = x / y

    y

    tensor

    returns

    current tensor

  37. abstract def ceil(): Tensor[T]

    Permalink

    Replaces all elements in-place with the ceil result of elements

  38. abstract def clamp(min: Double, max: Double): Tensor[T]

    Permalink
  39. abstract def cmax(x: Tensor[T], y: Tensor[T]): Tensor[T]

    Permalink

    stores the element-wise maximum of x and y in z.

    stores the element-wise maximum of x and y in z. z.cmax(x, y) means z = max(x, y)

    x

    tensor

    y

    tensor

  40. abstract def cmax(y: Tensor[T]): Tensor[T]

    Permalink

    stores the element-wise maximum of x and y in x.

    stores the element-wise maximum of x and y in x. x.cmax(y) = max(x, y)

    y

    tensor

    returns

    current tensor

  41. abstract def cmax(value: T): Tensor[T]

    Permalink

    For each elements of the tensor, performs the max operation compared with the given value vector.

  42. abstract def cmin(x: Tensor[T], y: Tensor[T]): Tensor[T]

    Permalink

    stores the element-wise maximum of x and y in z.

    stores the element-wise maximum of x and y in z. z.cmin(x, y) means z = min(x, y)

    x

    tensor

    y

    tensor

  43. abstract def cmin(y: Tensor[T]): Tensor[T]

    Permalink

    stores the element-wise maximum of x and y in x.

    stores the element-wise maximum of x and y in x. x.cmin(y) = min(x, y)

    y

    tensor

    returns

    current tensor

  44. abstract def cmul(x: Tensor[T], y: Tensor[T]): Tensor[T]

    Permalink

    Element-wise multiply z.cmul(x, y) equals z = x * y

    Element-wise multiply z.cmul(x, y) equals z = x * y

    x

    tensor

    y

    tensor

    returns

    current tensor

  45. abstract def cmul(y: Tensor[T]): Tensor[T]

    Permalink

    Element-wise multiply x.cmul(y) multiplies all elements of x with corresponding elements of y.

    Element-wise multiply x.cmul(y) multiplies all elements of x with corresponding elements of y. x = x * y

    y

    tensor

    returns

    current tensor

  46. abstract def conv2(kernel: Tensor[T], vf: Char = 'V'): Tensor[T]

    Permalink

    This function computes 2 dimensional convolution of a single image with a single kernel (2D output).

    This function computes 2 dimensional convolution of a single image with a single kernel (2D output). the dimensions of input and kernel need to be 2, and Input image needs to be bigger than kernel. The last argument controls if the convolution is a full ('F') or valid ('V') convolution. The default is valid convolution.

    vf

    full ('F') or valid ('V') convolution.

  47. abstract def digamma(): Tensor[T]

    Permalink

    Computes Psi, the derivative of Lgamma (the log of the absolute value of Gamma(x)), element-wise and update the content inplace

  48. abstract def dist(y: Tensor[T], norm: Int): T

    Permalink

    Performs the p-norm distance calculation between two tensors

    Performs the p-norm distance calculation between two tensors

    y

    the secode Tensor

    norm

    the norm of distance

  49. abstract def div(y: Tensor[T]): Tensor[T]

    Permalink

    Element-wise divide x.div(y) all elements of x divide all elements of y.

    Element-wise divide x.div(y) all elements of x divide all elements of y. x = x / y

    y

    tensor

    returns

    current tensor

  50. abstract def div(value: T): Tensor[T]

    Permalink

    divide all elements of this with value in-place.

  51. abstract def dot(y: Tensor[T]): T

    Permalink

    Performs the dot product.

    Performs the dot product. The number of elements must match: both Tensors are seen as a 1D vector.

  52. abstract def eq(x: Tensor[T], y: T): Tensor[T]

    Permalink

    Implements == operator comparing each element in x with y

    Implements == operator comparing each element in x with y

    returns

    current tensor reference

  53. abstract def erf(): Tensor[T]

    Permalink

    Computes the reciprocal of this tensor element-wise and update the content inplace

  54. abstract def erfc(): Tensor[T]

    Permalink

    Computes the reciprocal of this tensor element-wise and update the content inplace

  55. abstract def exp(): Tensor[T]

    Permalink
  56. abstract def exp(y: Tensor[T]): Tensor[T]

    Permalink
  57. abstract def floor(): Tensor[T]

    Permalink

    Replaces all elements in-place with the floor result of elements

  58. abstract def floor(y: Tensor[T]): Tensor[T]

    Permalink

    Populate the given tensor with the floor result of elements

  59. abstract def gather(dim: Int, index: Tensor[T], src: Tensor[T]): Tensor[T]

    Permalink

    change this tensor with values from the original tensor by gathering a number of values from each "row", where the rows are along the dimension dim.

    change this tensor with values from the original tensor by gathering a number of values from each "row", where the rows are along the dimension dim.

    returns

    this

  60. abstract def ge(x: Tensor[T], value: Double): Tensor[T]

    Permalink

    Implements >= operator comparing each element in x with value

  61. abstract def gt(x: Tensor[T], y: Tensor[T]): Tensor[T]

    Permalink

    Implements > operator comparing each element in x with y

    Implements > operator comparing each element in x with y

    returns

    current tensor reference

  62. abstract def index(dim: Int, index: Tensor[T], y: Tensor[T]): Tensor[T]

    Permalink

    Accumulate the elements of tensor into the original tensor by adding to the indices in the order given in index.

    Accumulate the elements of tensor into the original tensor by adding to the indices in the order given in index. The shape of tensor must exactly match the elements indexed or an error will be thrown.

  63. abstract def indexAdd(dim: Int, index: Tensor[T], y: Tensor[T]): Tensor[T]

    Permalink

    Accumulate the elements of tensor into the original tensor by adding to the indices in the order given in index.

    Accumulate the elements of tensor into the original tensor by adding to the indices in the order given in index. The shape of tensor must exactly match the elements indexed or an error will be thrown.

  64. abstract def inv(): Tensor[T]

    Permalink

    Computes the reciprocal of this tensor element-wise and update the content inplace

  65. abstract def le(x: Tensor[T], y: Tensor[T]): Tensor[T]

    Permalink

    Implements <= operator comparing each element in x with y

    Implements <= operator comparing each element in x with y

    returns

    current tensor reference

  66. abstract def log(): Tensor[T]

    Permalink
  67. abstract def log(y: Tensor[T]): Tensor[T]

    Permalink

    Replaces all elements in-place with the elements of lnx

    Replaces all elements in-place with the elements of lnx

    returns

    current tensor reference

  68. abstract def log1p(): Tensor[T]

    Permalink
  69. abstract def log1p(y: Tensor[T]): Tensor[T]

    Permalink
  70. abstract def logGamma(): Tensor[T]

    Permalink

    Computes the log of the absolute value of Gamma(x) element-wise, and update the content inplace

  71. abstract def lt(x: Tensor[T], y: Tensor[T]): Tensor[T]

    Permalink

    Implements < operator comparing each element in x with y

    Implements < operator comparing each element in x with y

    returns

    current tensor reference

  72. abstract def maskedCopy(mask: Tensor[T], y: Tensor[T]): Tensor[T]

    Permalink

    Copies the elements of tensor into mask locations of itself.

    Copies the elements of tensor into mask locations of itself.

    returns

    current tensor reference

  73. abstract def maskedFill(mask: Tensor[T], e: T): Tensor[T]

    Permalink

    Fills the masked elements of itself with value val

    Fills the masked elements of itself with value val

    returns

    current tensor reference

  74. abstract def maskedSelect(mask: Tensor[T], y: Tensor[T]): Tensor[T]

    Permalink

    Returns a new Tensor which contains all elements aligned to a 1 in the corresponding mask.

    Returns a new Tensor which contains all elements aligned to a 1 in the corresponding mask.

    returns

    current tensor reference

  75. abstract def max(values: Tensor[T], indices: Tensor[T], dim: Int): (Tensor[T], Tensor[T])

    Permalink

    performs the max operation over the dimension n

  76. abstract def max(dim: Int): (Tensor[T], Tensor[T])

    Permalink

    performs the max operation over the dimension n

  77. abstract def max(): T

    Permalink

    returns the single biggest element of x

  78. abstract def mean(dim: Int): Tensor[T]

    Permalink

    performs the mean operation over the dimension dim.

  79. abstract def mean(): T

    Permalink

    returns the mean of all elements of this.

  80. abstract def min(values: Tensor[T], indices: Tensor[T], dim: Int): (Tensor[T], Tensor[T])

    Permalink

    performs the min operation over the dimension n

  81. abstract def min(dim: Int): (Tensor[T], Tensor[T])

    Permalink

    performs the min operation over the dimension n

  82. abstract def min(): T

    Permalink

    returns the single minimum element of x

  83. abstract def mm(mat1: Tensor[T], mat2: Tensor[T]): Tensor[T]

    Permalink

    res = mat1*mat2

  84. abstract def mul(x: Tensor[T], value: T): Tensor[T]

    Permalink

    put the result of x * value in current tensor

  85. abstract def mul(value: T): Tensor[T]

    Permalink

    multiply all elements of this with value in-place.

  86. abstract def mv(mat: Tensor[T], vec2: Tensor[T]): Tensor[T]

    Permalink

    res = res + (mat * vec2)

  87. abstract def negative(x: Tensor[T]): Tensor[T]

    Permalink

    Computes numerical negative value element-wise.

    Computes numerical negative value element-wise. y = -x

    returns

    this tensor

  88. abstract def norm(value: Int): T

    Permalink

    returns the sum of the n-norms on the Tensor x

    returns the sum of the n-norms on the Tensor x

    value

    the n-norms

  89. abstract def norm(y: Tensor[T], value: Int, dim: Int): Tensor[T]

    Permalink

    returns the p-norms of the Tensor x computed over the dimension dim.

    returns the p-norms of the Tensor x computed over the dimension dim.

    y

    result buffer

  90. abstract def pow(n: T): Tensor[T]

    Permalink
  91. abstract def pow(y: Tensor[T], n: T): Tensor[T]

    Permalink

    Replaces all elements in-place with the elements of x to the power of n

    Replaces all elements in-place with the elements of x to the power of n

    returns

    current tensor reference

  92. abstract def prod(x: Tensor[T], dim: Int): Tensor[T]

    Permalink
  93. abstract def prod(): T

    Permalink

    returns the product of the elements of this

  94. abstract def range(xmin: Double, xmax: Double, step: Int = 1): Tensor[T]

    Permalink

    resize this tensor size to floor((xmax - xmin) / step) + 1 and set values from xmin to xmax with step (default to 1).

    resize this tensor size to floor((xmax - xmin) / step) + 1 and set values from xmin to xmax with step (default to 1).

    returns

    this tensor

  95. abstract def reduce(dim: Int, result: Tensor[T], reducer: (T, T) ⇒ T): Tensor[T]

    Permalink

    Reduce along the given dimension with the given reducer, and copy the result to the result tensor

  96. abstract def scatter(dim: Int, index: Tensor[T], src: Tensor[T]): Tensor[T]

    Permalink

    Writes all values from tensor src into this tensor at the specified indices

    Writes all values from tensor src into this tensor at the specified indices

    returns

    this

  97. abstract def sign(): Tensor[T]

    Permalink

    returns a new Tensor with the sign (+/- 1 or 0) of the elements of x.

  98. abstract def sqrt(y: Tensor[T]): Tensor[T]

    Permalink
  99. abstract def sqrt(): Tensor[T]

    Permalink

    replaces all elements in-place with the square root of the elements of this.

  100. abstract def square(): Tensor[T]

    Permalink

    Replaces all elements in-place with the elements of x squared

    Replaces all elements in-place with the elements of x squared

    returns

    current tensor reference

  101. abstract def sub(value: T): Tensor[T]

    Permalink
  102. abstract def sub(x: Tensor[T], y: Tensor[T]): Tensor[T]

    Permalink
  103. abstract def sub(y: Tensor[T]): Tensor[T]

    Permalink

    subtracts all elements of y from this

    subtracts all elements of y from this

    y

    other tensor

    returns

    current tensor

  104. abstract def sub(x: Tensor[T], value: T, y: Tensor[T]): Tensor[T]

    Permalink
  105. abstract def sub(value: T, y: Tensor[T]): Tensor[T]

    Permalink
  106. abstract def sum(x: Tensor[T], dim: Int): Tensor[T]

    Permalink
  107. abstract def sum(dim: Int): Tensor[T]

    Permalink

    performs the sum operation over the dimension dim

  108. abstract def sum(): T

    Permalink

    returns the sum of the elements of this

  109. abstract def sumSquare(): T

    Permalink
  110. abstract def tanh(y: Tensor[T]): Tensor[T]

    Permalink
  111. abstract def tanh(): Tensor[T]

    Permalink

    replaces all elements in-place with the tanh root of the elements of this.

  112. abstract def topk(k: Int, dim: Int = 1, increase: Boolean = true, result: Tensor[T] = null, indices: Tensor[T] = null, sortedResult: Boolean = true): (Tensor[T], Tensor[T])

    Permalink

    Get the top k smallest values and their indices.

    Get the top k smallest values and their indices.

    dim

    dimension, default is the last dimension

    increase

    sort order, set it to true if you want to get the smallest top k values

    result

    result buffer

    indices

    indices buffer

  113. abstract def unary_-(): Tensor[T]

    Permalink
  114. abstract def uniform(args: T*): T

    Permalink

    return pseudo-random numbers, require 0<=args.length<=2 if args.length = 0, return [0, 1) if args.length = 1, return [1, args(0)] or [args(0), 1] if args.length = 2, return [args(0), args(1)]

  115. abstract def xcorr2(kernel: Tensor[T], vf: Char = 'V'): Tensor[T]

    Permalink

    This function operates with same options and input/output configurations as conv2, but performs cross-correlation of the input with the kernel k.

    This function operates with same options and input/output configurations as conv2, but performs cross-correlation of the input with the kernel k.

    vf

    full ('F') or valid ('V') convolution.

Concrete Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. def +(e: Either[Tensor[T], T]): Tensor[T]

    Permalink
  4. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  5. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  6. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  7. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  8. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  9. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  10. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  11. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  12. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  13. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  14. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  15. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  16. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  17. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  18. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  19. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  20. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from AnyRef

Inherited from Any

Ungrouped