Object/Class

com.intel.analytics.bigdl.utils.caffe

CaffeLoader

Related Docs: class CaffeLoader | package caffe

Permalink

object CaffeLoader

Linear Supertypes
AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. CaffeLoader
  2. AnyRef
  3. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  5. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  6. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  7. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  8. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  9. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  10. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  11. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  12. def load[T](model: Module[T], defPath: String, modelPath: String, matchAll: Boolean = true, customizedConverters: HashMap[String, Customizable[T]] = null)(implicit arg0: ClassTag[T], ev: TensorNumeric[T]): Module[T]

    Permalink

    Load weight for pre-defined model

    Load weight for pre-defined model

    T

    data type

    model

    pre-defined model

    defPath

    prototxt file which defines the network

    modelPath

    weight file which contains the parameters

    matchAll

    if we need to match all layers from prototxt in weight file

    customizedConverters

    customized converters

    ev

    tensor numeric

    returns

    pre-defined model populated with weights

  13. def loadCaffe[T](defPath: String, modelPath: String, customizedConverters: HashMap[String, Customizable[T]] = null, outputNames: Array[String] = Array[String]())(implicit arg0: ClassTag[T], ev: TensorNumeric[T]): (Module[T], ParallelCriterion[T])

    Permalink

    load caffe model dynamically from prototxt and binary files

    load caffe model dynamically from prototxt and binary files

    T

    data type

    defPath

    prototxt file which illustrates the caffe model structure

    modelPath

    binary file containing the weight and bias

    customizedConverters

    customized layer converter

    outputNames

    additional output layer names besides the default(layers without next nodes)

    returns

    created module (graph) and criterion

  14. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  15. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  16. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  17. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  18. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  19. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  20. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  21. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from AnyRef

Inherited from Any

Ungrouped