com.intel.analytics.bigdl.nn

GRU

class GRU[T] extends Cell[T]

Gated Recurrent Units architecture. The first input in sequence uses zero value for cell and hidden state

Ref. 1. http://www.wildml.com/2015/10/ recurrent-neural-network-tutorial-part-4-implementing-a-grulstm-rnn-with-python-and-theano/

2. https://github.com/Element-Research/rnn/blob/master/GRU.lua

Annotations
@SerialVersionUID( 6717988395573528459L )
Linear Supertypes
Cell[T], AbstractModule[Table, Table, T], Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. GRU
  2. Cell
  3. AbstractModule
  4. Serializable
  5. Serializable
  6. AnyRef
  7. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Instance Constructors

  1. new GRU(inputSize: Int, outputSize: Int, p: Double = 0, wRegularizer: Regularizer[T] = null, uRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null)(implicit arg0: ClassTag[T], ev: TensorNumeric[T])

    inputSize

    the size of each input vector

    outputSize

    Hidden unit size in GRU

    p

    is used for Dropout probability. For more details about RNN dropouts, please refer to [RnnDrop: A Novel Dropout for RNNs in ASR] (http://www.stat.berkeley.edu/~tsmoon/files/Conference/asru2015.pdf) [A Theoretically Grounded Application of Dropout in Recurrent Neural Networks] (https://arxiv.org/pdf/1512.05287.pdf)

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. def accGradParameters(input: Table, gradOutput: Table): Unit

    Computing the gradient of the module with respect to its own parameters.

    Computing the gradient of the module with respect to its own parameters. Many modules do not perform this step as they do not have any parameters. The state variable name for the parameters is module dependent. The module is expected to accumulate the gradients with respect to the parameters in some variable.

    input
    gradOutput

    Definition Classes
    CellAbstractModule
  7. def apply(name: String): Option[AbstractModule[Activity, Activity, T]]

    Find a module with given name.

    Find a module with given name. If there is no module with given name, it will return None. If there are multiple modules with the given name, an exception will be thrown.

    name
    returns

    Definition Classes
    AbstractModule
  8. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  9. var bRegularizer: Regularizer[T]

  10. def backward(input: Table, gradOutput: Table): Table

    Performs a back-propagation step through the module, with respect to the given input.

    Performs a back-propagation step through the module, with respect to the given input. In general this method makes the assumption forward(input) has been called before, with the same input. This is necessary for optimization reasons. If you do not respect this rule, backward() will compute incorrect gradients.

    input

    input data

    gradOutput

    gradient of next layer

    returns

    gradient corresponding to input data

    Definition Classes
    AbstractModule
  11. var backwardTime: Long

    Attributes
    protected
    Definition Classes
    AbstractModule
  12. def buildGRU(): AbstractModule[Activity, Activity, T]

  13. def buildGates(): AbstractModule[Activity, Activity, T]

  14. def canEqual(other: Any): Boolean

    Definition Classes
    GRUAbstractModule
  15. var cell: AbstractModule[Activity, Activity, T]

    Any recurrent kernels should have a cell member variable which represents the module in the kernel.

    Any recurrent kernels should have a cell member variable which represents the module in the kernel.

    The cell receive an input with a format of T(input, preHiddens), and the output should be a format of T(output, hiddens). The hiddens represents the kernel's output hiddens at the current time step, which will be transferred to next time step. For instance, a simple RnnCell, hiddens is h, for LSTM, hiddens is T(h, c), and for both of them, the output variable represents h. Similarly the preHiddens is the kernel's output hiddens at the previous time step.

    Definition Classes
    GRUCell
  16. def checkEngineType(): GRU.this.type

    get execution engine type

    get execution engine type

    Definition Classes
    AbstractModule
  17. def clearState(): GRU.this.type

    Clear cached activities to save storage space or network bandwidth.

    Clear cached activities to save storage space or network bandwidth. Note that we use Tensor.set to keep some information like tensor share

    The subclass should override this method if it allocate some extra resource, and call the super.clearState in the override method

    returns

    Definition Classes
    AbstractModule
  18. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  19. def cloneModule(): AbstractModule[Table, Table, T]

    Definition Classes
    AbstractModule
  20. def copyStatus(src: Module[T]): GRU.this.type

    Copy the useful running status from src to this.

    Copy the useful running status from src to this.

    The subclass should override this method if it has some parameters besides weight and bias. Such as runningMean and runningVar of BatchNormalization.

    src

    source Module

    returns

    this

    Definition Classes
    AbstractModule
  21. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  22. def equals(other: Any): Boolean

    Definition Classes
    GRUAbstractModule → AnyRef → Any
  23. def evaluate(dataSet: LocalDataSet[MiniBatch[T]], vMethods: Array[ValidationMethod[T]]): Array[(ValidationResult, ValidationMethod[T])]

    Definition Classes
    AbstractModule
  24. def evaluate(dataset: RDD[Sample[T]], vMethods: Array[ValidationMethod[T]], batchSize: Option[Int] = None): Array[(ValidationResult, ValidationMethod[T])]

    use ValidationMethod to evaluate module

    use ValidationMethod to evaluate module

    dataset

    dataset for test

    vMethods

    validation methods

    batchSize

    total batchsize of all partitions, optional param and default 4 * partitionNum of dataset

    returns

    Definition Classes
    AbstractModule
  25. def evaluate(): GRU.this.type

    Definition Classes
    AbstractModule
  26. val featDim: Int

  27. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  28. final def forward(input: Table): Table

    Takes an input object, and computes the corresponding output of the module.

    Takes an input object, and computes the corresponding output of the module. After a forward, the output state variable should have been updated to the new value.

    input

    input data

    returns

    output data

    Definition Classes
    AbstractModule
  29. var forwardTime: Long

    Attributes
    protected
    Definition Classes
    AbstractModule
  30. var gates: AbstractModule[_, _, T]

  31. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  32. def getName(): String

    Get the module name, default name is className@namePostfix

    Get the module name, default name is className@namePostfix

    returns

    Definition Classes
    AbstractModule
  33. def getNumericType(): TensorDataType

    returns

    Float or Double

    Definition Classes
    AbstractModule
  34. def getParameters(): (Tensor[T], Tensor[T])

    This method compact all parameters and gradients of the model into two tensors.

    This method compact all parameters and gradients of the model into two tensors. So it's easier to use optim method

    returns

    Definition Classes
    AbstractModule
  35. def getParametersTable(): Table

    This function returns a table contains ModuleName, the parameter names and parameter value in this module.

    This function returns a table contains ModuleName, the parameter names and parameter value in this module. The result table is a structure of Table(ModuleName -> Table(ParameterName -> ParameterValue)), and the type is Table[String, Table[String, Tensor[T]]].

    For example, get the weight of a module named conv1: table[Table]("conv1")[Tensor[T]]("weight").

    Custom modules should override this function if they have parameters.

    returns

    Table

    Definition Classes
    CellAbstractModule
  36. def getPrintName(): String

    Attributes
    protected
    Definition Classes
    AbstractModule
  37. def getScaleB(): Double

    Get the scale of gradientBias

    Get the scale of gradientBias

    Definition Classes
    AbstractModule
  38. def getScaleW(): Double

    Get the scale of gradientWeight

    Get the scale of gradientWeight

    Definition Classes
    AbstractModule
  39. def getTimes(): Array[(AbstractModule[_ <: Activity, _ <: Activity, T], Long, Long)]

    Definition Classes
    AbstractModule
  40. def getWeightsBias(): Array[Tensor[T]]

    Get weight and bias for the module

    Get weight and bias for the module

    returns

    array of weights and bias

    Definition Classes
    AbstractModule
  41. var gradInput: Table

    The cached gradient of activities.

    The cached gradient of activities. So we don't compute it again when need it

    Definition Classes
    AbstractModule
  42. var h2g: AbstractModule[_, _, T]

  43. def hashCode(): Int

    Definition Classes
    GRUAbstractModule → AnyRef → Any
  44. def hidResize(hidden: Activity, size: Int, rows: Int = 1, columns: Int = 1): Activity

    resize the hidden parameters wrt the batch size, hiddens shapes.

    resize the hidden parameters wrt the batch size, hiddens shapes.

    e.g. RnnCell contains 1 hidden parameter (H), thus it will return Tensor(size) LSTM contains 2 hidden parameters (C and H) and will return T(Tensor(), Tensor())\ and recursively intialize all the tensors in the Table.

    hidden
    size

    batchSize

    returns

    Definition Classes
    Cell
  45. val hiddensShape: Array[Int]

    Definition Classes
    Cell
  46. var i2g: AbstractModule[_, _, T]

  47. val inputSize: Int

    the size of each input vector

  48. def inputs(nodes: ModuleNode[T]*): ModuleNode[T]

    Some other modules point to current module

    Some other modules point to current module

    nodes

    upstream module nodes

    returns

    node containing current module

    Definition Classes
    AbstractModule
  49. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  50. final def isTraining(): Boolean

    Definition Classes
    AbstractModule
  51. var line: String

    Attributes
    protected
    Definition Classes
    AbstractModule
  52. def loadModelWeights(srcModel: Module[Float], matchAll: Boolean = true): GRU.this.type

    copy weights from another model, mapping by layer name

    copy weights from another model, mapping by layer name

    srcModel

    model to copy from

    matchAll

    whether to match all layers' weights and bias,

    returns

    current module

    Definition Classes
    AbstractModule
  53. def loadWeights(weightPath: String, matchAll: Boolean = true): GRU.this.type

    load pretrained weights and bias to current module

    load pretrained weights and bias to current module

    weightPath

    file to store weights and bias

    matchAll

    whether to match all layers' weights and bias, if not, only load existing pretrained weights and bias

    returns

    current module

    Definition Classes
    AbstractModule
  54. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  55. final def notify(): Unit

    Definition Classes
    AnyRef
  56. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  57. var output: Table

    The cached output.

    The cached output. So we don't compute it again when need it

    Definition Classes
    AbstractModule
  58. val outputSize: Int

    Hidden unit size in GRU

  59. val p: Double

    is used for Dropout probability.

    is used for Dropout probability. For more details about RNN dropouts, please refer to [RnnDrop: A Novel Dropout for RNNs in ASR] (http://www.stat.berkeley.edu/~tsmoon/files/Conference/asru2015.pdf) [A Theoretically Grounded Application of Dropout in Recurrent Neural Networks] (https://arxiv.org/pdf/1512.05287.pdf)

  60. def parameters(): (Array[Tensor[T]], Array[Tensor[T]])

    This function returns two arrays.

    This function returns two arrays. One for the weights and the other the gradients Custom modules should override this function if they have parameters

    returns

    (Array of weights, Array of grad)

    Definition Classes
    CellAbstractModule
  61. def preTopology: AbstractModule[Activity, Activity, T]

    The preTopology defines operations to pre-process the input when it is not dependent on the time dimension.

    The preTopology defines operations to pre-process the input when it is not dependent on the time dimension. For example, the i2h in SimpleRNN Cell can be calculated before the recurrence since all the input slices are independent.

    This is particular useful to boost the performance of the recurrent layer.

    Please define your own preTopology according to your Cell structure. Please refer to SimpleRNN or LSTM for reference.

    returns

    Definition Classes
    GRUCell
  62. def predict(dataset: RDD[Sample[T]]): RDD[Activity]

    module predict, return the probability distribution

    module predict, return the probability distribution

    dataset

    dataset for prediction

    Definition Classes
    AbstractModule
  63. def predictClass(dataset: RDD[Sample[T]]): RDD[Int]

    module predict, return the predict label

    module predict, return the predict label

    dataset

    dataset for prediction

    Definition Classes
    AbstractModule
  64. def regluarized(isRegularized: Boolean): Unit

    Use this method to set the whether the recurrent cell is regularized

    Use this method to set the whether the recurrent cell is regularized

    isRegularized

    whether to be regularized or not

    Definition Classes
    Cell
  65. var regularizers: Array[Regularizer[T]]

    Definition Classes
    Cell
  66. def reset(): Unit

    Definition Classes
    CellAbstractModule
  67. def resetTimes(): Unit

    Definition Classes
    AbstractModule
  68. def save(path: String, overWrite: Boolean = false): GRU.this.type

    Save this module to path.

    Save this module to path.

    path

    path to save module, local file system, HDFS and Amazon S3 is supported. HDFS path should be like "hdfs://[host]:[port]/xxx" Amazon S3 path should be like "s3a://bucket/xxx"

    overWrite

    if overwrite

    returns

    self

    Definition Classes
    AbstractModule
  69. def saveCaffe(prototxtPath: String, modelPath: String, useV2: Boolean = true, overwrite: Boolean = false): GRU.this.type

    Definition Classes
    AbstractModule
  70. def saveTF(inputs: Seq[(String, Seq[Int])], path: String, byteOrder: ByteOrder = ByteOrder.LITTLE_ENDIAN, dataFormat: TensorflowDataFormat = TensorflowDataFormat.NHWC): GRU.this.type

    Definition Classes
    AbstractModule
  71. def saveTorch(path: String, overWrite: Boolean = false): GRU.this.type

    Definition Classes
    AbstractModule
  72. def saveWeights(path: String, overWrite: Boolean): Unit

    save weights and bias to file

    save weights and bias to file

    path

    file to save

    overWrite

    whether to overwrite or not

    Definition Classes
    AbstractModule
  73. var scaleB: Double

    Attributes
    protected
    Definition Classes
    AbstractModule
  74. var scaleW: Double

    The scale of gradient weight and gradient bias before gradParameters being accumulated.

    The scale of gradient weight and gradient bias before gradParameters being accumulated.

    Attributes
    protected
    Definition Classes
    AbstractModule
  75. def setLine(line: String): GRU.this.type

    Definition Classes
    AbstractModule
  76. def setName(name: String): GRU.this.type

    Set the module name

    Set the module name

    name
    returns

    Definition Classes
    AbstractModule
  77. def setScaleB(b: Double): GRU.this.type

    Set the scale of gradientBias

    Set the scale of gradientBias

    b

    the value of the scale of gradientBias

    returns

    this

    Definition Classes
    AbstractModule
  78. def setScaleW(w: Double): GRU.this.type

    Set the scale of gradientWeight

    Set the scale of gradientWeight

    w

    the value of the scale of gradientWeight

    returns

    this

    Definition Classes
    AbstractModule
  79. def setWeightsBias(newWeights: Array[Tensor[T]]): GRU.this.type

    Set weight and bias for the module

    Set weight and bias for the module

    newWeights

    array of weights and bias

    returns

    Definition Classes
    AbstractModule
  80. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  81. def toString(): String

    Definition Classes
    AbstractModule → AnyRef → Any
  82. var train: Boolean

    Module status.

    Module status. It is useful for modules like dropout/batch normalization

    Attributes
    protected
    Definition Classes
    AbstractModule
  83. def training(): GRU.this.type

    Definition Classes
    AbstractModule
  84. var uRegularizer: Regularizer[T]

  85. def updateGradInput(input: Table, gradOutput: Table): Table

    Computing the gradient of the module with respect to its own input.

    Computing the gradient of the module with respect to its own input. This is returned in gradInput. Also, the gradInput state variable is updated accordingly.

    input
    gradOutput
    returns

    Definition Classes
    CellAbstractModule
  86. def updateOutput(input: Table): Table

    Computes the output using the current parameter set of the class and input.

    Computes the output using the current parameter set of the class and input. This function returns the result which is stored in the output field.

    input
    returns

    Definition Classes
    CellAbstractModule
  87. def updateParameters(learningRate: T): Unit

    Definition Classes
    CellAbstractModule
  88. var wRegularizer: Regularizer[T]

  89. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  90. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  91. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  92. def zeroGradParameters(): Unit

    If the module has parameters, this will zero the accumulation of the gradients with respect to these parameters.

    If the module has parameters, this will zero the accumulation of the gradients with respect to these parameters. Otherwise, it does nothing.

    Definition Classes
    CellAbstractModule

Inherited from Cell[T]

Inherited from AbstractModule[Table, Table, T]

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped